Partial structural characterization of the cytoplasmic domain of the erythrocyte membrane protein, band 3.

K. C. Appell, P. S. Low

Research output: Contribution to journalArticlepeer-review

80 Scopus citations


The cytoplasmic domain of band 3 was released from spectrin-depleted, acetic acid-stripped erythrocyte membrane vesicles by mild chymotryptic digestion. After purification by ion exchange and gel filtration chromatography, the fragment preparation was found to be greater than 90% pure on polyacrylamide disc gels in the presence of 0.2% sodium dodecyl sulfate. The subunit Mr from the electrophoretic procedure was estimated at approximately 40,000. The isolated cytoplasmic fragment ws judged to be a dimer, since (i) the unmodified fragment and its disulfide-cross-linked (dimeric) counterpart eluted in the same peak fraction from a Sephacryl S-200 gel filtration column, and (ii) the sedimentation velocity molecular weight of the native fragment was calculated to be approximately 95,000. No evidence of either larger or smaller aggregates was obtained. The frictional ratio of the fragment was measured at 1.6, suggesting a highly elongated morphology. The circular dichroism spectrum of the fragment corresponded to approximately 37% alpha helix. Titration of the cytoplasmic fragment over the physiological pH range gave rise to a reversible 2-fold increase in the intrinsic fluorescence quantum yield (lambda ex, 290 nm; lambda em, 335 nm) between pH 6 and 9. Computer analysis of the data yielded a temperature-dependent apparent pKa of 7.8 at 37 degrees C and 8.1 at 20 degrees C, both with Hill coefficients less than or equal to 1. Calorimetric experiments revealed a similar sensitivity to pH, where the denaturation temperature of the fragment titrated from 74 degrees C at pH 6 to 59 degrees C at pH 8.5, with an apparent pKa of 7.3 and a Hill coefficient less than 1. The enthalpies and widths at half-height of the transitions were also exquisitely sensitive to pH. The fluorescence and calorimetric data could all be described by the titration of a single ionizable group of apparent pKa of 7.8 at 37 degrees C and delta pKa/degrees C of -0.018. The ionization of this critical group is suggested to exert significant control over the structure/stability of the cytoplasmic domain of band 3.

Original languageEnglish (US)
Pages (from-to)11104-11111
Number of pages8
JournalJournal of Biological Chemistry
Issue number21
StatePublished - Nov 10 1981

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology


Dive into the research topics of 'Partial structural characterization of the cytoplasmic domain of the erythrocyte membrane protein, band 3.'. Together they form a unique fingerprint.

Cite this