TY - JOUR
T1 - Oxidized cholesteryl esters and phospholipids in zebrafish larvae fed a high cholesterol diet
T2 - Macrophage binding and activation
AU - Fang, Longhou
AU - Harkewicz, Richard
AU - Hartvigsen, Karsten
AU - Wiesner, Philipp
AU - Choi, Soo Ho
AU - Almazan, Felicidad
AU - Pattison, Jennifer
AU - Deer, Elena
AU - Sayaphupha, Tiffany
AU - Dennis, Edward A.
AU - Witztum, Joseph L.
AU - Tsimikas, Sotirios
AU - Miller, Yury I.
N1 - Copyright:
Copyright 2011 Elsevier B.V., All rights reserved.
PY - 2010/10/15
Y1 - 2010/10/15
N2 - A novel hypercholesterolemic zebrafish model has been developed to study early events of atherogenesis. This model utilizes optically transparent zebrafish larvae, fed a high cholesterol diet (HCD), to monitor processes of vascular inflammation in live animals. Because lipoprotein oxidation is an important factor in the development of atherosclerosis, in this study, we characterized the oxidized lipid milieu in HCD-fed zebrafish larvae. Using liquid chromatography-mass spectrometry, we show that feeding an HCD for only 2 weeks resulted in up to 70-fold increases in specific oxidized cholesteryl esters, identical to those present in human minimally oxidized LDL and in murine atherosclerotic lesions. The levels of oxidized phospholipids,suchas1- palmitoyl-2-oxovaleroyl-sn-glycero-3-phosphocholine, and of various lysophosphatidylcholines were also significantly elevated. Moreover, lipoproteins isolated from homogenates of HCD-fed larvae induced cell spreading as well as ERK1/2, Akt, and JNK phosphorylation in murine macrophages. Removal of apoB-containing lipoproteins from the zebrafish homogenates with an anti-human LDL antibody, as well as reducing lipid hydroperoxides with ebselen, resulted in inhibition of macrophage activation. The TLR4 deficiency in murine macrophages prevented their activation with zebrafish lipoproteins. Using biotinylated homogenates of HCD-fed larvae, we demonstrated that their components bound to murine macrophages, and this binding was effectively competed by minimally oxidized LDL but not by native LDL. These data provide evidence that molecular lipid determinants of proatherogenic macrophage phenotypes are present in large quantities in hypercholesterolemic zebrafish larvae and support the use of the HCD-fed zebrafish as a valuable model to study early events of atherogenesis.
AB - A novel hypercholesterolemic zebrafish model has been developed to study early events of atherogenesis. This model utilizes optically transparent zebrafish larvae, fed a high cholesterol diet (HCD), to monitor processes of vascular inflammation in live animals. Because lipoprotein oxidation is an important factor in the development of atherosclerosis, in this study, we characterized the oxidized lipid milieu in HCD-fed zebrafish larvae. Using liquid chromatography-mass spectrometry, we show that feeding an HCD for only 2 weeks resulted in up to 70-fold increases in specific oxidized cholesteryl esters, identical to those present in human minimally oxidized LDL and in murine atherosclerotic lesions. The levels of oxidized phospholipids,suchas1- palmitoyl-2-oxovaleroyl-sn-glycero-3-phosphocholine, and of various lysophosphatidylcholines were also significantly elevated. Moreover, lipoproteins isolated from homogenates of HCD-fed larvae induced cell spreading as well as ERK1/2, Akt, and JNK phosphorylation in murine macrophages. Removal of apoB-containing lipoproteins from the zebrafish homogenates with an anti-human LDL antibody, as well as reducing lipid hydroperoxides with ebselen, resulted in inhibition of macrophage activation. The TLR4 deficiency in murine macrophages prevented their activation with zebrafish lipoproteins. Using biotinylated homogenates of HCD-fed larvae, we demonstrated that their components bound to murine macrophages, and this binding was effectively competed by minimally oxidized LDL but not by native LDL. These data provide evidence that molecular lipid determinants of proatherogenic macrophage phenotypes are present in large quantities in hypercholesterolemic zebrafish larvae and support the use of the HCD-fed zebrafish as a valuable model to study early events of atherogenesis.
UR - http://www.scopus.com/inward/record.url?scp=77957823300&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77957823300&partnerID=8YFLogxK
U2 - 10.1074/jbc.M110.137257
DO - 10.1074/jbc.M110.137257
M3 - Article
C2 - 20710028
AN - SCOPUS:77957823300
SN - 0021-9258
VL - 285
SP - 32343
EP - 32351
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 42
ER -