On in-silico estimation of left ventricular end-diastolic pressure from cardiac strains

Emilio A. Mendiola, Raza Rana Mehdi, Dipan J. Shah, Reza Avazmohammadi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Left ventricular diastolic dysfunction (LVDD) is a group of diseases that adversely affect the passive phase of the cardiac cycle and can lead to heart failure. While left ventricular end-diastolic pressure (LVEDP) is a valuable prognostic measure in LVDD patients, traditional invasive methods of measuring LVEDP present risks and limitations, highlighting the need for alternative approaches. This paper investigates the possibility of measuring LVEDP non-invasively using inverse in-silico modeling. We propose the adoption of patient-specific cardiac modeling and simulation to estimate LVEDP and myocardial stiffness from cardiac strains. We have developed a high-fidelity patient-specific computational model of the left ventricle. Through an inverse modeling approach, myocardial stiffness and LVEDP were accurately estimated from cardiac strains that can be acquired from in vivo imaging, indicating the feasibility of computational modeling to augment current approaches in the measurement of ventricular pressure. Integration of such computational platforms into clinical practice holds promise for early detection and comprehensive assessment of LVDD with reduced risk for patients.

Original languageEnglish (US)
Title of host publication46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2024 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9798350371499
DOIs
StatePublished - 2024
Event46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2024 - Orlando, United States
Duration: Jul 15 2024Jul 19 2024

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Conference

Conference46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2024
Country/TerritoryUnited States
CityOrlando
Period7/15/247/19/24

Keywords

  • cardiac biomechanics
  • computational modeling
  • diastolic dysfunction
  • left ventricle

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'On in-silico estimation of left ventricular end-diastolic pressure from cardiac strains'. Together they form a unique fingerprint.

Cite this