TY - JOUR
T1 - Novel phosphotyrosine targets of FGFR2IIIb signaling
AU - Luo, Yongde
AU - Yang, Chaofeng
AU - Jin, Chengliu
AU - Xie, Rui
AU - Wang, Fen
AU - McKeehan, Wallace L.
N1 - Funding Information:
This work was supported partially by NIH grant CA059971 and DK47039 (to W.L.M.), and by the J.S. Dunn Research Foundation and the Alliance for NanoHealth (Houston, TX) (to W.L.M and Y.L.).
PY - 2009/9
Y1 - 2009/9
N2 - In partnership exclusively with the epithelial FGFR2IIIb isotype and a structurally-specific heparan sulfate motif, stromal-derived FGF7 delivers both growth-promoting and growth-limiting differentiation signals to epithelial cells that promote cellular homeostasis between stromal and epithelial compartments. Intercompartmental homeostasis supported by FGF7/FGFR2IIIb is subverted in many solid epithelial tumors. The normally mesenchymal-derived homologue FGFR1 drives proliferation and a progressive tumor-associated phenotype when it appears ectopically in epithelial cells. In order to understand the mechanism underlying the unique biological effects of FGFR2IIIb, we developed an inducible FGFR2IIIb expression system that is specifically dependent on FGF7 for activation in an initially unresponsive cell line to avoid selection for only the growth-promoting aspects of FGFR2IIIb signaling. We then determined FGF7/FGFR2IIIb signaling-specific tyrosine phosphorylated proteins within 5 min after FGF7 stimulation by phosphopeptide immunoaffinity purification and nano-LC-MS/MS. The FGF7/FGFR2 pair caused tyrosine phosphorylation of multiple proteins that have been implicated in the growth stimulating activities of FGFR1 that included multi-substrate organizers FRS2α and IRS4, ERK2 and phosphatases SHP2 and SHIP2. It uniquely phosphorylated CDK2 and phosphatase PTPN18 on sites involved in the attenuation of cell proliferation, and several factors that maintain nuclear-cytosolic relationships (emerin and LAP2), protein structure and other cellular fine structures as well as some proteins of unknown functions. Several of the FGF7/FGFR2IIIb-specific targets have been associated with maintenance of function and tumor suppression and disruption in tumors. In contrast, a number of pTyr substrates associated with FGF2/FGFR1 that are generally associated with intracellular Ca2+-phospholipid signaling, membrane and cytoskeletal plasticity, cell adhesion, migration and the tumorigenic phenotype were not observed with FGF7/FGFR2IIIb. Our findings provide specific downstream targets for dissection of causal relationships underlying the distinct role of FGF7/FGFR2IIIb signaling in epithelial cell homeostasis.
AB - In partnership exclusively with the epithelial FGFR2IIIb isotype and a structurally-specific heparan sulfate motif, stromal-derived FGF7 delivers both growth-promoting and growth-limiting differentiation signals to epithelial cells that promote cellular homeostasis between stromal and epithelial compartments. Intercompartmental homeostasis supported by FGF7/FGFR2IIIb is subverted in many solid epithelial tumors. The normally mesenchymal-derived homologue FGFR1 drives proliferation and a progressive tumor-associated phenotype when it appears ectopically in epithelial cells. In order to understand the mechanism underlying the unique biological effects of FGFR2IIIb, we developed an inducible FGFR2IIIb expression system that is specifically dependent on FGF7 for activation in an initially unresponsive cell line to avoid selection for only the growth-promoting aspects of FGFR2IIIb signaling. We then determined FGF7/FGFR2IIIb signaling-specific tyrosine phosphorylated proteins within 5 min after FGF7 stimulation by phosphopeptide immunoaffinity purification and nano-LC-MS/MS. The FGF7/FGFR2 pair caused tyrosine phosphorylation of multiple proteins that have been implicated in the growth stimulating activities of FGFR1 that included multi-substrate organizers FRS2α and IRS4, ERK2 and phosphatases SHP2 and SHIP2. It uniquely phosphorylated CDK2 and phosphatase PTPN18 on sites involved in the attenuation of cell proliferation, and several factors that maintain nuclear-cytosolic relationships (emerin and LAP2), protein structure and other cellular fine structures as well as some proteins of unknown functions. Several of the FGF7/FGFR2IIIb-specific targets have been associated with maintenance of function and tumor suppression and disruption in tumors. In contrast, a number of pTyr substrates associated with FGF2/FGFR1 that are generally associated with intracellular Ca2+-phospholipid signaling, membrane and cytoskeletal plasticity, cell adhesion, migration and the tumorigenic phenotype were not observed with FGF7/FGFR2IIIb. Our findings provide specific downstream targets for dissection of causal relationships underlying the distinct role of FGF7/FGFR2IIIb signaling in epithelial cell homeostasis.
KW - Fibroblast growth factor (FGF)
KW - Receptor tyrosine kinases
KW - Stromal-epithelial homeostasis
KW - Tumor suppression
KW - Tyrosine phosphatases
UR - http://www.scopus.com/inward/record.url?scp=67349255822&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=67349255822&partnerID=8YFLogxK
U2 - 10.1016/j.cellsig.2009.04.004
DO - 10.1016/j.cellsig.2009.04.004
M3 - Article
C2 - 19410646
AN - SCOPUS:67349255822
SN - 0898-6568
VL - 21
SP - 1370
EP - 1378
JO - Cellular Signalling
JF - Cellular Signalling
IS - 9
ER -