Nitrate reduction pathways in mycobacteria and their implications during latency

Arshad Khan, Dhiman Sarkar

Research output: Contribution to journalReview article

22 Scopus citations

Abstract

Mycobacterial persistence has gained a lot of attention with respect to developing novel antitubercular drugs, which could drastically reduce the duration of tuberculosis (TB) therapy. A better understanding of the physiology of Mycobacterium tuberculosis, and of the metabolic state of the bacillus during the latent period, is a primary need in finding drug targets against persistent TB. Recent biochemical and genetic studies of nitrate reduction in mycobacteria have revealed the roles of distinct proteins and enzymes involved in the pathway. The differential degree of nitrate reduction among pathogenic and non-pathogenic mycobacterial species, and its regulation during oxygen and nutrient limitation, suggest a link between nitrate reduction pathways and latency. The respiratory and assimilatory reduction of nitrate in mycobacteria may be interconnected to facilitate rapid adaptation to changing oxygen and/or nitrogen conditions, increasing metabolic flexibility for survival in the hostile host environment. This review summarizes the nitrate metabolic pathways operative in mycobacteria to provide an insight into the mechanisms that M. tuberculosis has evolved to adapt successfully to the host environment.

Original languageEnglish (US)
Pages (from-to)301-307
Number of pages7
JournalMicrobiology
Volume158
Issue number2
DOIs
StatePublished - Feb 2012

ASJC Scopus subject areas

  • Microbiology

Fingerprint Dive into the research topics of 'Nitrate reduction pathways in mycobacteria and their implications during latency'. Together they form a unique fingerprint.

Cite this