TY - JOUR
T1 - Neuregulin 1 confers neuroprotection in SOD1-linked amyotrophic lateral sclerosis mice via restoration of C-boutons of spinal motor neurons
AU - Lasiene, Jurate
AU - Komine, Okiru
AU - Fujimori-Tonou, Noriko
AU - Powers, Berit
AU - Endo, Fumito
AU - Watanabe, Seiji
AU - Shijie, Jin
AU - Ravits, John
AU - Horner, Philip
AU - Misawa, Hidemi
AU - Yamanaka, Koji
N1 - Funding Information:
This work was supported by Grants-in-Aid for Scientific Research on Innovative Areas (23111006: to K.Y.) and Scientific Research (B) (26293208: to K.Y.), Grants-in-Aid for Young Scientists (B) (26830046: to O.K.), for JSPS fellows (10 F00518: to J.L.) from the Ministry for Education, Culture, and Sports, Science and Technology of Japan, Grant-in-Aid for Research on rare and intractable diseases, the Research Committee on Establishment of Novel Treatments for Amyotrophic Lateral Sclerosis, from Japan Agency for Medical Research and Development (AMED), Daiko Foundation, Uehara Memorial Foundation, and IBC grant from Japan ALS association (K.Y.). J.L. is supported by JSPS postdoctoral fellowship for foreign researchers.
PY - 2016/2/18
Y1 - 2016/2/18
N2 - INTRODUCTION: Increasing evidence implicates the role of the cell types surrounding motor neurons, such as interneurons and glial cells, in non-cell autonomous neurodegeneration of amyotrophic lateral sclerosis (ALS). C-boutons, the large cholinergic synapses that innervate spinal α-motor neurons to control their excitability, are progressively lost from motor neurons in both human ALS and mutant Cu/Zn superoxide dismutase 1 (SOD1)-ALS mice. Neuregulin-1 (NRG1), a trophic factor implicated in neural development, transmission, and synaptic plasticity, has been reported to localize in the synapse of C-boutons. However, the roles of NRG1 in maintenance of motor neuron health and activity, as well as the functional consequences of its alteration in motor neuron disease, are not fully understood.RESULTS: NRG1 was localized to the post-synaptic face of C-boutons and its expression was significantly lost in SOD1-ALS mice and human ALS patients. Losses of NRG1 expression and C-boutons occurred almost contemporaneously in SOD1-ALS mice. In addition, expressions of ErbB3 and ErbB4, receptors for NRG1, were reduced in the motor neurons of SOD1-ALS mice. Furthermore, viral-mediated delivery of type III-NRG1 to the spinal cord restored the number of C-boutons and extended the survival time of SOD1-ALS mice.CONCLUSIONS: These results suggest that maintenance of NRG1-ErbB4/3 axis by supplementation of NRG1 confers neuroprotection in motor neuron disease, partly through the maintenance of C-boutons of spinal motor neurons.
AB - INTRODUCTION: Increasing evidence implicates the role of the cell types surrounding motor neurons, such as interneurons and glial cells, in non-cell autonomous neurodegeneration of amyotrophic lateral sclerosis (ALS). C-boutons, the large cholinergic synapses that innervate spinal α-motor neurons to control their excitability, are progressively lost from motor neurons in both human ALS and mutant Cu/Zn superoxide dismutase 1 (SOD1)-ALS mice. Neuregulin-1 (NRG1), a trophic factor implicated in neural development, transmission, and synaptic plasticity, has been reported to localize in the synapse of C-boutons. However, the roles of NRG1 in maintenance of motor neuron health and activity, as well as the functional consequences of its alteration in motor neuron disease, are not fully understood.RESULTS: NRG1 was localized to the post-synaptic face of C-boutons and its expression was significantly lost in SOD1-ALS mice and human ALS patients. Losses of NRG1 expression and C-boutons occurred almost contemporaneously in SOD1-ALS mice. In addition, expressions of ErbB3 and ErbB4, receptors for NRG1, were reduced in the motor neurons of SOD1-ALS mice. Furthermore, viral-mediated delivery of type III-NRG1 to the spinal cord restored the number of C-boutons and extended the survival time of SOD1-ALS mice.CONCLUSIONS: These results suggest that maintenance of NRG1-ErbB4/3 axis by supplementation of NRG1 confers neuroprotection in motor neuron disease, partly through the maintenance of C-boutons of spinal motor neurons.
UR - http://www.scopus.com/inward/record.url?scp=85008939123&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85008939123&partnerID=8YFLogxK
U2 - 10.1186/s40478-016-0286-7
DO - 10.1186/s40478-016-0286-7
M3 - Article
C2 - 26891847
AN - SCOPUS:85008939123
SN - 2051-5960
VL - 4
SP - 15
JO - Acta Neuropathologica Communications
JF - Acta Neuropathologica Communications
ER -