Abstract

Previous work from this and other laboratories has demonstrated phosphorylation of myelin BP in vivo and in vitro. The rapid turnover of BP phosphate has suggested the presence of a phosphatase. The present studies have identified two BP phosphatases. One is present in the cytosol of rat brain homogenate. It has the highest specific activity (37 pmol/min/mg) and total activity of BP phosphatase present in any subcellular fraction. The partially purified cytosol enzyme can readily dephosphorylate soluble 32P-labelled BP but is only half as effective in dephosphorylating membrane-bound BP. Conversely, the phosphatase which remains associated with highly purified myelin is 2.3 times as effective on BP in the membrane (7.2 pmol/min/mg) as on soluble BP (3.2 pmol/min/mg). The myelin phosphatase is tightly bound to membrane and cannot be removed with concentrated salt solutions. During development the specific activity of the cytosol phosphatase remains constant. The specific activity of the myelin phosphatase, however, is twice as high during the period of maximum myelin formation (6.8 pmol/min/mg at 18 days) as it is in adult myelin (3.2 pmol/min/mg at 12 weeks). In order to compare enzyme effectiveness under the various conditions employed in these studies, we have assumed that both soluble and particulate substrates are phosphorylated at equivalent sites on the polypeptide. We have further assumed that soluble and/or particulate substrates are dephosphorylated at equivalent sites on the polypeptide chain and that the various particulate and soluble enzymes have comparable access to the substrate. Within the limitations of these assumptions, our data suggest myelin phosphatase may play a significant role in phosphate turnover of BP.

Original languageEnglish (US)
Pages (from-to)27-35
Number of pages9
JournalJournal of Neurochemistry
Volume29
Issue number1
DOIs
StatePublished - Jan 1 1977

ASJC Scopus subject areas

  • Biochemistry
  • Cellular and Molecular Neuroscience

Fingerprint Dive into the research topics of 'MYELIN BASIC PROTEIN PHOSPHATASE ACTIVITY IN RAT BRAIN'. Together they form a unique fingerprint.

Cite this