TY - JOUR
T1 - Multiple intravenous infusions phase 2b
T2 - Laboratory study
AU - Pinkney, Sonia
AU - Fan, Mark
AU - Chan, Katherine
AU - Koczmara, Christine
AU - Colvin, Christopher
AU - Sasangohar, Farzan
AU - Masino, Caterina
AU - Easty, Anthony
AU - Trbovich, Patricia
PY - 2014
Y1 - 2014
N2 - Background Administering multiple intravenous (IV) infusions to a single patient via infusion pump occurs routinely in health care, but there has been little empirical research examining the risks associated with this practice or ways to mitigate those risks. Objectives To identify the risks associated with multiple IV infusions and assess the impact of interventions on nurses' ability to safely administer them. Data Sources and Review Methods Forty nurses completed infusion-related tasks in a simulated adult intensive care unit, with and without interventions (i.e., repeated-measures design). Results Errors were observed in completing common tasks associated with the administration of multiple IV infusions, including the following (all values from baseline, which was current practice): setting up and programming multiple primary continuous IV infusions (e.g., 11.7% programming errors) identifying IV infusions (e.g., 7.7% line-tracing errors) managing dead volume (e.g., 96.0% flush rate errors following IV syringe dose administration) setting up a secondary intermittent IV infusion (e.g., 11.3% secondary clamp errors) administering an IV pump bolus (e.g., 11.5% programming errors) Of 10 interventions tested, 6 (1 practice, 3 technology, and 2 educational) significantly decreased or even eliminated errors compared to baseline. Limitations The simulation of an adult intensive care unit at 1 hospital limited the ability to generalize results. The study results were representative of nurses who received training in the interventions but had little experience using them. The longitudinal effects of the interventions were not studied. Conclusions Administering and managing multiple IV infusions is a complex and risk-prone activity. However, when a patient requires multiple IV infusions, targeted interventions can reduce identified risks. A combination of standardized practice, technology improvements, and targeted education is required.
AB - Background Administering multiple intravenous (IV) infusions to a single patient via infusion pump occurs routinely in health care, but there has been little empirical research examining the risks associated with this practice or ways to mitigate those risks. Objectives To identify the risks associated with multiple IV infusions and assess the impact of interventions on nurses' ability to safely administer them. Data Sources and Review Methods Forty nurses completed infusion-related tasks in a simulated adult intensive care unit, with and without interventions (i.e., repeated-measures design). Results Errors were observed in completing common tasks associated with the administration of multiple IV infusions, including the following (all values from baseline, which was current practice): setting up and programming multiple primary continuous IV infusions (e.g., 11.7% programming errors) identifying IV infusions (e.g., 7.7% line-tracing errors) managing dead volume (e.g., 96.0% flush rate errors following IV syringe dose administration) setting up a secondary intermittent IV infusion (e.g., 11.3% secondary clamp errors) administering an IV pump bolus (e.g., 11.5% programming errors) Of 10 interventions tested, 6 (1 practice, 3 technology, and 2 educational) significantly decreased or even eliminated errors compared to baseline. Limitations The simulation of an adult intensive care unit at 1 hospital limited the ability to generalize results. The study results were representative of nurses who received training in the interventions but had little experience using them. The longitudinal effects of the interventions were not studied. Conclusions Administering and managing multiple IV infusions is a complex and risk-prone activity. However, when a patient requires multiple IV infusions, targeted interventions can reduce identified risks. A combination of standardized practice, technology improvements, and targeted education is required.
UR - http://www.scopus.com/inward/record.url?scp=84899883428&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84899883428&partnerID=8YFLogxK
M3 - Article
C2 - 26316919
AN - SCOPUS:84899883428
SN - 1915-7398
VL - 14
JO - Ontario Health Technology Assessment Series
JF - Ontario Health Technology Assessment Series
IS - 5
ER -