Multi-view 3D face reconstruction with deep recurrent neural networks

Research output: Contribution to journalArticlepeer-review

26 Scopus citations


Image-based 3D face reconstruction has great potential in different areas, such as facial recognition, facial analysis, and facial animation. Due to the variations in image quality, single-image-based 3D face reconstruction might not be sufficient to accurately reconstruct a 3D face. To overcome this limitation, multi-view 3D face reconstruction uses multiple images of the same subject and aggregates complementary information for better accuracy. Though appealing, there are multiple challenges in practice. Among these challenges, the most significant is the difficulty to establish coherent and accurate correspondence among a set of images, especially when these images are captured under unconstrained in-the-wild condition. This work proposes a method, Deep Recurrent 3D FAce Reconstruction (DRFAR), to solve the task of multi-view 3D face reconstruction using a subspace representation of the 3D facial shape and a deep recurrent neural network that consists of both a deep convolutional neural network (DCNN) and a recurrent neural network (RNN). The DCNN disentangles the facial identity and the facial expression components for each single image independently, while the RNN fuses identity-related features from the DCNN and aggregates the identity specific contextual information, or the identity signal, from the whole set of images to estimate the facial identity parameter, which is robust to variations in image quality and is consistent over the whole set of images. Experimental results indicate significant improvement over state-of-the-art in both the accuracy and the consistency of 3D face reconstruction. Moreover, face recognition results on IJB-A with the UR2D face recognition pipeline indicate that, compared to single-view 3D face reconstruction, the proposed multi-view 3D face reconstruction algorithm can improve the face identification accuracy of UR2D by two percentage points in Rank-1 identification rate.

Original languageEnglish (US)
Pages (from-to)80-91
Number of pages12
JournalImage and Vision Computing
StatePublished - Dec 2018


  • 3D face reconstruction
  • Face recognition
  • Long-short term memory
  • Recurrent neural network

ASJC Scopus subject areas

  • Signal Processing
  • Computer Vision and Pattern Recognition


Dive into the research topics of 'Multi-view 3D face reconstruction with deep recurrent neural networks'. Together they form a unique fingerprint.

Cite this