More to Less (M2L): Enhanced Health Recognition in the Wild with Reduced Modality of Wearable Sensors

Huiyuan Yang, Han Yu, Kusha Sridhar, Thomas Vaessen, Inez Myin-Germeys, Akane Sano

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

Accurately recognizing health-related conditions from wearable data is crucial for improved healthcare outcomes. To improve the recognition accuracy, various approaches have focused on how to effectively fuse information from multiple sensors. Fusing multiple sensors is a common choice in many applications, but may not always be feasible in real-world scenarios. For example, although combining biosignals from multiple sensors (i.e., a chest pad sensor and a wrist wearable sensor) has been proved effective for improved performance, wearing multiple devices might be impractical in the free-living context. To solve the challenges, we propose an effective more to less (M2L) learning framework to improve testing performance with reduced sensors through leveraging the complementary information of multiple modalities during training. More specifically, different sensors may carry different but complementary information, and our model is designed to enforce collaborations among different modalities, where positive knowledge transfer is encouraged and negative knowledge transfer is suppressed, so that better representation is learned for individual modalities. Our experimental results show that our framework achieves comparable performance when compared with the full modalities. Our code and results will be available at https://github.com/comp-well-org/More2Less.git.

Original languageEnglish (US)
Title of host publication44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2022
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3253-3256
Number of pages4
ISBN (Electronic)9781728127828
DOIs
StatePublished - 2022
Event44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2022 - Glasgow, United Kingdom
Duration: Jul 11 2022Jul 15 2022

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2022-July
ISSN (Print)1557-170X

Conference

Conference44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2022
Country/TerritoryUnited Kingdom
CityGlasgow
Period7/11/227/15/22

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'More to Less (M2L): Enhanced Health Recognition in the Wild with Reduced Modality of Wearable Sensors'. Together they form a unique fingerprint.

Cite this