Abstract
Designing deep neural networks is an art that often involves an expensive search over candidate architectures. To overcome this for recurrent neural nets (RNNs), we establish a connection between the hidden state dynamics in an RNN and gradient descent (GD). We then integrate momentum into this framework and propose a new family of RNNs, called MomentumRNNs. We theoretically prove and numerically demonstrate that MomentumRNNs alleviate the vanishing gradient issue in training RNNs. We study the momentum long-short term memory (MomentumLSTM) and verify its advantages in convergence speed and accuracy over its LSTM counterpart across a variety of benchmarks. We also demonstrate that MomentumRNN is applicable to many types of recurrent cells, including those in the state-of-the-art orthogonal RNNs. Finally, we show that other advanced momentum-based optimization methods, such as Adam and Nesterov accelerated gradients with a restart, can be easily incorporated into the MomentumRNN framework for designing new recurrent cells with even better performance.
Original language | English (US) |
---|---|
Journal | Advances in Neural Information Processing Systems |
Volume | 2020-December |
State | Published - 2020 |
Event | 34th Conference on Neural Information Processing Systems, NeurIPS 2020 - Virtual, Online Duration: Dec 6 2020 → Dec 12 2020 |
ASJC Scopus subject areas
- Computer Networks and Communications
- Information Systems
- Signal Processing