Molecular-level analysis of the serum antibody repertoire in young adults before and after seasonal influenza vaccination

Jiwon Lee, Daniel R. Boutz, Veronika Chromikova, M. Gordon Joyce, Christopher Vollmers, Kwanyee Leung, Andrew P. Horton, Brandon J. DeKosky, Chang Han Lee, Jason J. Lavinder, Ellen M. Murrin, Constantine Chrysostomou, Kam Hon Hoi, Yaroslav Tsybovsky, Paul V. Thomas, Aliaksandr Druz, Baoshan Zhang, Yi Zhang, Lingshu Wang, Wing Pui KongDaechan Park, Lyubov I. Popova, Cornelia L. Dekker, Mark M. Davis, Chalise E. Carter, Ted M. Ross, Andrew D. Ellington, Patrick C. Wilson, Edward M. Marcotte, John R. Mascola, Gregory C. Ippolito, Florian Krammer, Stephen R. Quake, Peter D. Kwong, George Georgiou

Research output: Contribution to journalArticle

146 Scopus citations

Abstract

Molecular understanding of serological immunity to influenza has been confounded by the complexity of the polyclonal antibody response in humans. Here we used high-resolution proteomics analysis of immunoglobulin (referred to as Ig-seq) coupled with high-throughput sequencing of transcripts encoding B cell receptors (BCR-seq) to quantitatively determine the antibody repertoire at the individual clonotype level in the sera of young adults before and after vaccination with trivalent seasonal influenza vaccine. The serum repertoire comprised between 40 and 147 clonotypes that were specific to each of the three monovalent components of the trivalent influenza vaccine, with boosted pre-existing clonotypes accounting for â 1/460% of the response. An unexpectedly high fraction of serum antibodies recognized both the H1 and H3 monovalent vaccines. Recombinant versions of these H1 + H3 cross-reactive antibodies showed broad binding to hemagglutinins (HAs) from previously circulating virus strains; several of these antibodies, which were prevalent in the serum of multiple donors, recognized the same conserved epitope in the HA head domain. Although the HA-head-specific H1 + H3 antibodies did not show neutralization activity in vitro, they protected mice against infection with the H1N1 and H3N2 virus strains when administered before or after challenge. Collectively, our data reveal unanticipated insights regarding the serological response to influenza vaccination and raise questions about the added benefits of using a quadrivalent vaccine instead of a trivalent vaccine.

Original languageEnglish (US)
Pages (from-to)1456-1464
Number of pages9
JournalNature Medicine
Volume22
Issue number12
DOIs
StatePublished - Dec 1 2016

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)

Fingerprint Dive into the research topics of 'Molecular-level analysis of the serum antibody repertoire in young adults before and after seasonal influenza vaccination'. Together they form a unique fingerprint.

Cite this