TY - JOUR
T1 - Microfabricated and 3-D printed electroconductive hydrogels of PEDOT:PSS and their application in bioelectronics
AU - Aggas, John R.
AU - Abasi, Sara
AU - Phipps, Jesse F.
AU - Podstawczyk, Daria A.
AU - Guiseppi-Elie, Anthony
N1 - Publisher Copyright:
© 2020 Elsevier B.V.
PY - 2020/11/15
Y1 - 2020/11/15
N2 - Biofabrication techniques such as microlithography and 3-D bioprinting have emerged in recent years as technologies capable of rendering complex, biocompatible constructs for biosensors, tissue and regenerative engineering and bioelectronics. While instruments and processes have been the subject of immense advancement, multifunctional bioinks have received less attention. A novel photocrosslinkable, hybrid bioactive and inherently conductive bioink formed from poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) nanomaterials within poly(2-hydroxyethyl methacrylate-co-polyethyleneglycol methacrylate) p(HEMA-co-EGMA) was used to render complex hydrogel constructs through microlithographic fabrication and 3-D printing. Constructs were directly compared through established metrics of acuity and fidelity, using side-by-side comparison of microarray grids, triangles incorporating angles 15–90°, and a multi-ink hydrogel disk array. Compositional variation from 0.01 to 1.00 wt% PEDOT:PSS produced hydrogels of varying and tunable electrical and electrochemical properties, while maintaining similar rheological properties (up to 0.50 wt% PEDOT:PSS). Furthermore, hydrogel membrane resistances extracted from equivalent circuit modeling of electrical impedance spectroscopy data varied only according to the included wt% of PEDOT:PSS and were agnostic of fabrication method. An in-silico variable frequency active low-pass filter was developed using a microlithographically fabricated Individually Addressable Microband Electrode (IAME) as the filtering capacitor, wherein 3-D printed lines of varying wt% of PEDOT:PSS hydrogels were shown to alter the cutoff frequency of the analog filter, indicating a potential use as tunable 3-D printed organic electronic analog filtering elements for biosensors. Bioinks of different PEDOT:PSS (0.0, 0.1, and 0.5 wt%) manufactured into hydrogel disks using the two methods were shown to yield similarly cytocompatible substrates for attachment and differentiation of PC-12 neural progenitor cells.
AB - Biofabrication techniques such as microlithography and 3-D bioprinting have emerged in recent years as technologies capable of rendering complex, biocompatible constructs for biosensors, tissue and regenerative engineering and bioelectronics. While instruments and processes have been the subject of immense advancement, multifunctional bioinks have received less attention. A novel photocrosslinkable, hybrid bioactive and inherently conductive bioink formed from poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) nanomaterials within poly(2-hydroxyethyl methacrylate-co-polyethyleneglycol methacrylate) p(HEMA-co-EGMA) was used to render complex hydrogel constructs through microlithographic fabrication and 3-D printing. Constructs were directly compared through established metrics of acuity and fidelity, using side-by-side comparison of microarray grids, triangles incorporating angles 15–90°, and a multi-ink hydrogel disk array. Compositional variation from 0.01 to 1.00 wt% PEDOT:PSS produced hydrogels of varying and tunable electrical and electrochemical properties, while maintaining similar rheological properties (up to 0.50 wt% PEDOT:PSS). Furthermore, hydrogel membrane resistances extracted from equivalent circuit modeling of electrical impedance spectroscopy data varied only according to the included wt% of PEDOT:PSS and were agnostic of fabrication method. An in-silico variable frequency active low-pass filter was developed using a microlithographically fabricated Individually Addressable Microband Electrode (IAME) as the filtering capacitor, wherein 3-D printed lines of varying wt% of PEDOT:PSS hydrogels were shown to alter the cutoff frequency of the analog filter, indicating a potential use as tunable 3-D printed organic electronic analog filtering elements for biosensors. Bioinks of different PEDOT:PSS (0.0, 0.1, and 0.5 wt%) manufactured into hydrogel disks using the two methods were shown to yield similarly cytocompatible substrates for attachment and differentiation of PC-12 neural progenitor cells.
KW - 3-D printing
KW - Electrical impedance
KW - Electroconductive hydrogels
KW - Microfabrication
KW - Neuronal cells
UR - http://www.scopus.com/inward/record.url?scp=85090212425&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85090212425&partnerID=8YFLogxK
U2 - 10.1016/j.bios.2020.112568
DO - 10.1016/j.bios.2020.112568
M3 - Article
C2 - 32905929
AN - SCOPUS:85090212425
SN - 0956-5663
VL - 168
SP - 112568
JO - Biosensors and Bioelectronics
JF - Biosensors and Bioelectronics
M1 - 112568
ER -