Microfabricated and 3-D printed electroconductive hydrogels of PEDOT:PSS and their application in bioelectronics

John R. Aggas, Sara Abasi, Jesse F. Phipps, Daria A. Podstawczyk, Anthony Guiseppi-Elie

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

Biofabrication techniques such as microlithography and 3-D bioprinting have emerged in recent years as technologies capable of rendering complex, biocompatible constructs for biosensors, tissue and regenerative engineering and bioelectronics. While instruments and processes have been the subject of immense advancement, multifunctional bioinks have received less attention. A novel photocrosslinkable, hybrid bioactive and inherently conductive bioink formed from poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) nanomaterials within poly(2-hydroxyethyl methacrylate-co-polyethyleneglycol methacrylate) p(HEMA-co-EGMA) was used to render complex hydrogel constructs through microlithographic fabrication and 3-D printing. Constructs were directly compared through established metrics of acuity and fidelity, using side-by-side comparison of microarray grids, triangles incorporating angles 15–90°, and a multi-ink hydrogel disk array. Compositional variation from 0.01 to 1.00 wt% PEDOT:PSS produced hydrogels of varying and tunable electrical and electrochemical properties, while maintaining similar rheological properties (up to 0.50 wt% PEDOT:PSS). Furthermore, hydrogel membrane resistances extracted from equivalent circuit modeling of electrical impedance spectroscopy data varied only according to the included wt% of PEDOT:PSS and were agnostic of fabrication method. An in-silico variable frequency active low-pass filter was developed using a microlithographically fabricated Individually Addressable Microband Electrode (IAME) as the filtering capacitor, wherein 3-D printed lines of varying wt% of PEDOT:PSS hydrogels were shown to alter the cutoff frequency of the analog filter, indicating a potential use as tunable 3-D printed organic electronic analog filtering elements for biosensors. Bioinks of different PEDOT:PSS (0.0, 0.1, and 0.5 wt%) manufactured into hydrogel disks using the two methods were shown to yield similarly cytocompatible substrates for attachment and differentiation of PC-12 neural progenitor cells.

Original languageEnglish (US)
Article number112568
JournalBiosensors and Bioelectronics
Volume168
DOIs
StatePublished - Nov 15 2020

Keywords

  • 3-D printing
  • Electrical impedance
  • Electroconductive hydrogels
  • Microfabrication
  • Neuronal cells

ASJC Scopus subject areas

  • Biotechnology
  • Biophysics
  • Biomedical Engineering
  • Electrochemistry

Fingerprint Dive into the research topics of 'Microfabricated and 3-D printed electroconductive hydrogels of PEDOT:PSS and their application in bioelectronics'. Together they form a unique fingerprint.

Cite this