TY - JOUR
T1 - Mice with alterations in both p53 and Ink4a/Arf display a striking increase in lung tumor multiplicity and progression
T2 - Differential chemopreventive effect of budesonide in wild-type and mutant A/J mice
AU - Wang, Yian
AU - Zhang, Zhongqiu
AU - Kastens, Elizabeth
AU - Lubet, Ronald A.
AU - You, Ming
N1 - Copyright:
Copyright 2008 Elsevier B.V., All rights reserved.
PY - 2003/8/1
Y1 - 2003/8/1
N2 - p53 transgenic mice carrying a dominant negative mutation were crossed with Ink4A/Arf heterozygous-deficient mice to investigate whether there is a synergy between these two germ-line mutations in promoting carcinogen-induced lung tumor progression in mice. Mice with a p53 dominant negative mutation and Ink4A/Arf heterozygous deficiency exhibited >20-fold increase in tumor volume compared with ∼4-fold increase in Ink4A/Arf heterozygous-deficient mice and a 9-fold increase in mice with only the p53 dominant negative mutation. The effect of Ink4A/Arf heterozygous deficiency on lung tumor progression occurred late in the carcinogenesis process (>30 weeks after carcinogen treatment). In addition, most of the lung tumors (∼80%) from mice with a p53 mutation and deletion of Ink4A/Arf were lung adenocarcinomas. In contrast, lung adenocarcinomas were seen in <10% of the lung tumors from the wild-type mice and ∼50% of the lung tumors from Ink4a/Arf heterozygous-deficient or p53 mutant mice. These results indicate a significant synergistic interaction between the presence of a mutant p53 transgene and the Ink4A/Arf deletion during lung tumor progression (P < 0.01). The usefulness of this new mouse model in lung cancer chemoprevention was examined. The chemopreventive efficacy of budesonide was examined in wild-type mice, mice with Ink4A/Arf heterozygous deficiency, mice with a mutation in the p53 gene, or mice with both a mutation in the p53 gene and deletion in the Ink4A/Arf locus. Mice treated with budesonide displayed an average of 90% inhibition of lung tumor progression in a standard 18-week chemoprevention assay, regardless of p53 and/or Ink4A/Arf status. However, the efficacy of budesonide against lung tumor progression decreased from 94 to 77% (P = 0.07) in mice with alterations in both p53 and Ink4A/Arf in a 40-week chemoprevention assay. Similarly, when mice bearing established lung adenomas were treated with budesonide, genotype-dependent differential effects of budesonide in wild-type and mutant mice were clearly revealed with a 82, 64, 45, and 33% decrease in tumor volume in wild-type mice, p53+/+Ink4a/Arf+/- mice, p53+/-Ink4a/Arf+/+ mice, and p53+/-Ink4a/Arf+/-, respectively. Thus, mutant mice with alterations in p53 and/or Ink4A/Arf exhibited a significant resistance to chemoprevention by budesonide. Because p53 and Ink4a/Arf mutations are the most prevalent mutations in human lung cancers, the effectiveness of chemopreventive agents on the mutant A/J mice containing alterations with p53 and Ink4a/Arf is the best preclinical estimate of their efficacy in humans. Thus, the mutant A/J mouse model should prove useful for chemoprevention studies.
AB - p53 transgenic mice carrying a dominant negative mutation were crossed with Ink4A/Arf heterozygous-deficient mice to investigate whether there is a synergy between these two germ-line mutations in promoting carcinogen-induced lung tumor progression in mice. Mice with a p53 dominant negative mutation and Ink4A/Arf heterozygous deficiency exhibited >20-fold increase in tumor volume compared with ∼4-fold increase in Ink4A/Arf heterozygous-deficient mice and a 9-fold increase in mice with only the p53 dominant negative mutation. The effect of Ink4A/Arf heterozygous deficiency on lung tumor progression occurred late in the carcinogenesis process (>30 weeks after carcinogen treatment). In addition, most of the lung tumors (∼80%) from mice with a p53 mutation and deletion of Ink4A/Arf were lung adenocarcinomas. In contrast, lung adenocarcinomas were seen in <10% of the lung tumors from the wild-type mice and ∼50% of the lung tumors from Ink4a/Arf heterozygous-deficient or p53 mutant mice. These results indicate a significant synergistic interaction between the presence of a mutant p53 transgene and the Ink4A/Arf deletion during lung tumor progression (P < 0.01). The usefulness of this new mouse model in lung cancer chemoprevention was examined. The chemopreventive efficacy of budesonide was examined in wild-type mice, mice with Ink4A/Arf heterozygous deficiency, mice with a mutation in the p53 gene, or mice with both a mutation in the p53 gene and deletion in the Ink4A/Arf locus. Mice treated with budesonide displayed an average of 90% inhibition of lung tumor progression in a standard 18-week chemoprevention assay, regardless of p53 and/or Ink4A/Arf status. However, the efficacy of budesonide against lung tumor progression decreased from 94 to 77% (P = 0.07) in mice with alterations in both p53 and Ink4A/Arf in a 40-week chemoprevention assay. Similarly, when mice bearing established lung adenomas were treated with budesonide, genotype-dependent differential effects of budesonide in wild-type and mutant mice were clearly revealed with a 82, 64, 45, and 33% decrease in tumor volume in wild-type mice, p53+/+Ink4a/Arf+/- mice, p53+/-Ink4a/Arf+/+ mice, and p53+/-Ink4a/Arf+/-, respectively. Thus, mutant mice with alterations in p53 and/or Ink4A/Arf exhibited a significant resistance to chemoprevention by budesonide. Because p53 and Ink4a/Arf mutations are the most prevalent mutations in human lung cancers, the effectiveness of chemopreventive agents on the mutant A/J mice containing alterations with p53 and Ink4a/Arf is the best preclinical estimate of their efficacy in humans. Thus, the mutant A/J mouse model should prove useful for chemoprevention studies.
UR - http://www.scopus.com/inward/record.url?scp=0042090506&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0042090506&partnerID=8YFLogxK
M3 - Article
C2 - 12907609
AN - SCOPUS:0042090506
SN - 0008-5472
VL - 63
SP - 4389
EP - 4395
JO - Cancer research
JF - Cancer research
IS - 15
ER -