TY - JOUR
T1 - Metal-polymer interface influences apparent electrical properties of nano-structured polyaniline films
AU - Aggas, John R.
AU - Harrell, William
AU - Lutkenhaus, Jodie
AU - Guiseppi-Elie, Anthony
N1 - Publisher Copyright:
© The Royal Society of Chemistry 2018.
PY - 2018/1/14
Y1 - 2018/1/14
N2 - The interface between the conductive polymer, polyaniline (PAn-Cl), and gold, platinum, or an interceding layer of electrodeposited platinum on gold or platinum, markedly influences the apparent electrical properties and the electronic to ionic transition in physiological buffers. Polyester-supported, sputter-deposited gold and platinum thin films were laser patterned to yield co-planar Thin Film Electrodes (TFEs) suitable for platinization and deposition of PAn-Cl nanofibers. Electrodeposition of platinum from chloroplatinic acid (50 mC cm-2) onto gold produced larger feature sizes and larger surface roughness (23.5 nm) when compared to platinization of platinum (15.2 nm) and both similarly reduced interfacial impedance in water and physiologically relevant buffers, PBS and HEPES. UV-Vis characterization produced absorption edges (DI water 2.36 eV, PBS 2.64 eV, and HEPES 2.66 eV) reflective of the ionic strength of the medium. Thin films (23 ± 2 μm) of PAn-Cl nanofibers were deposited onto Au, Pt, AuPt, PtPt TFEs and each characterized by Electrical Impedance Spectroscopy (EIS) over the range 106-10-1 Hz at RT in air, DI water, PBS, and HEPES buffers and by multiple scan rate cyclic voltammetry (MSRCV) in PBS. Platinized gold and platinized platinum decorated with PAn-Cl behaved quite differently in these test environments confirming a role for the contacting surface roughness/nano-topography in influencing apparent electrical properties. Equivalent circuit modeling of EIS data revealed a modified Randles circuit (R(QR)) of low chi-square values (<0.05) that rationalized the capacitance and membrane resistance and confirmed that platinization of gold served to increase the PAn-Cl apparent resistance while platinization of platinum served to decrease the PAn-Cl apparent resistance.
AB - The interface between the conductive polymer, polyaniline (PAn-Cl), and gold, platinum, or an interceding layer of electrodeposited platinum on gold or platinum, markedly influences the apparent electrical properties and the electronic to ionic transition in physiological buffers. Polyester-supported, sputter-deposited gold and platinum thin films were laser patterned to yield co-planar Thin Film Electrodes (TFEs) suitable for platinization and deposition of PAn-Cl nanofibers. Electrodeposition of platinum from chloroplatinic acid (50 mC cm-2) onto gold produced larger feature sizes and larger surface roughness (23.5 nm) when compared to platinization of platinum (15.2 nm) and both similarly reduced interfacial impedance in water and physiologically relevant buffers, PBS and HEPES. UV-Vis characterization produced absorption edges (DI water 2.36 eV, PBS 2.64 eV, and HEPES 2.66 eV) reflective of the ionic strength of the medium. Thin films (23 ± 2 μm) of PAn-Cl nanofibers were deposited onto Au, Pt, AuPt, PtPt TFEs and each characterized by Electrical Impedance Spectroscopy (EIS) over the range 106-10-1 Hz at RT in air, DI water, PBS, and HEPES buffers and by multiple scan rate cyclic voltammetry (MSRCV) in PBS. Platinized gold and platinized platinum decorated with PAn-Cl behaved quite differently in these test environments confirming a role for the contacting surface roughness/nano-topography in influencing apparent electrical properties. Equivalent circuit modeling of EIS data revealed a modified Randles circuit (R(QR)) of low chi-square values (<0.05) that rationalized the capacitance and membrane resistance and confirmed that platinization of gold served to increase the PAn-Cl apparent resistance while platinization of platinum served to decrease the PAn-Cl apparent resistance.
UR - http://www.scopus.com/inward/record.url?scp=85040170822&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85040170822&partnerID=8YFLogxK
U2 - 10.1039/c7nr06503e
DO - 10.1039/c7nr06503e
M3 - Article
C2 - 29239451
AN - SCOPUS:85040170822
SN - 2040-3364
VL - 10
SP - 672
EP - 682
JO - Nanoscale
JF - Nanoscale
IS - 2
ER -