TY - JOUR
T1 - Membrane glycoprotein changes associated with anthracycline resistance in HL-60 cells
AU - Gervasoni, James E.
AU - Taub, Robert N.
AU - Rosado, Michelle
AU - Krishna, Sindu
AU - Stewart, Valerie J.
AU - Knowles, Daniel M.
AU - Bhalla, Kapil
AU - Ross, Douglas D.
AU - Baker, Michael A.
AU - Lutzky, Jose
AU - Hindenburg, Alexander A.
N1 - Copyright:
Copyright 2007 Elsevier B.V., All rights reserved.
PY - 1991/3
Y1 - 1991/3
N2 - The glycoproteins on the surface of HL-60/S wild-type, drug-sensitive human leukemia cells and HL-60/AR anthracycline-resistant cells which do not overexpress the P-glycoprotein, were characterized by labeling with [35S]-methionine, NaB[3H4], phosphorus 32, or sodium iodide I 125. HL-60/S and HL-60/AR cell lysates and membrane fractions tagged with [35S]-methionine or phosphorus 32 showed no significant differences in their protein patterns as analyzed by sodium dodecyl sulfatepolyacrylamide gel electrophoresis (SDS-PAGE) and by autoradiography. HL-60/S cells labeled with NaB[3H4] yielded glycoproteins that were smeared predominantly in the molecular-weight range of 210,000 and 160,000 Da, with pI values ranging between pH 4 and pH 4.4. In contrast, NaB[3H4]-labeled HL-60/AR cells showed 7-8 discrete glycoproteins within a molecular-weight range of 170,000 and 140,000 Da, with pI values also ranging between pH 4 and pH 4.4. In addition, [3H]-glucosamine incorporation into HL-60/S and HL-60/AR cells revealed that the latter showed lower uptake of [3H]-glucosamine than did the former. Following treatment with tunicamycin, [3H]-glucosamine uptake in HL-60/S cells decreased, whereas that in HL-60/AR cells remained unchanged. Surface-membrane radioiodination of HL-60/S and HL-60/AR cells showed two distinct protein electrophoretic patterns, with differences being observed in both the high-(220-95 kDa) and low-molecular-weight ranges (21 kDa). Flow cytometric analysis of HL-60/S and HL-60/AR cells using myeloid and lymphoid antigen-specific antibodies demonstrated no antigenic differences between HL-60/S and HL-60/AR cells. HL-60/S cells incubated in the presence of tunicamycin, an inhibitor of N-linked glycosylation, or the protein kinase C agonist phorbol 12-myristate 13-acetate (PMA) developed a glycoprotein pattern similar to that observed in HL-60/AR cells. In addition, tunicamycin treatment of HL-60/S cells decreased daunorubicin (DNR) retention and altered its intracellular distribution as compared with that in HL-60/AR cells. These data indicate that HL-60/AR cells do not possess either de novo or amplified high-molecular-weight surface-membrane proteins; instead, existing proteins are hypoglycosylated. These results also show that HL-60/AR cells exhibit the multidrug-resistant phenotype in association with altered membrane glycoproteins of both high (220-95 kDa) and low molecular weight (21 kDa), but without overexpression of the P-glycoprotein. Furthermore, in HL-60/S cells, the multidrug-resistant phenotype is partially inducible by inhibition of N-linked glycosylation of cell-surfac proteins.
AB - The glycoproteins on the surface of HL-60/S wild-type, drug-sensitive human leukemia cells and HL-60/AR anthracycline-resistant cells which do not overexpress the P-glycoprotein, were characterized by labeling with [35S]-methionine, NaB[3H4], phosphorus 32, or sodium iodide I 125. HL-60/S and HL-60/AR cell lysates and membrane fractions tagged with [35S]-methionine or phosphorus 32 showed no significant differences in their protein patterns as analyzed by sodium dodecyl sulfatepolyacrylamide gel electrophoresis (SDS-PAGE) and by autoradiography. HL-60/S cells labeled with NaB[3H4] yielded glycoproteins that were smeared predominantly in the molecular-weight range of 210,000 and 160,000 Da, with pI values ranging between pH 4 and pH 4.4. In contrast, NaB[3H4]-labeled HL-60/AR cells showed 7-8 discrete glycoproteins within a molecular-weight range of 170,000 and 140,000 Da, with pI values also ranging between pH 4 and pH 4.4. In addition, [3H]-glucosamine incorporation into HL-60/S and HL-60/AR cells revealed that the latter showed lower uptake of [3H]-glucosamine than did the former. Following treatment with tunicamycin, [3H]-glucosamine uptake in HL-60/S cells decreased, whereas that in HL-60/AR cells remained unchanged. Surface-membrane radioiodination of HL-60/S and HL-60/AR cells showed two distinct protein electrophoretic patterns, with differences being observed in both the high-(220-95 kDa) and low-molecular-weight ranges (21 kDa). Flow cytometric analysis of HL-60/S and HL-60/AR cells using myeloid and lymphoid antigen-specific antibodies demonstrated no antigenic differences between HL-60/S and HL-60/AR cells. HL-60/S cells incubated in the presence of tunicamycin, an inhibitor of N-linked glycosylation, or the protein kinase C agonist phorbol 12-myristate 13-acetate (PMA) developed a glycoprotein pattern similar to that observed in HL-60/AR cells. In addition, tunicamycin treatment of HL-60/S cells decreased daunorubicin (DNR) retention and altered its intracellular distribution as compared with that in HL-60/AR cells. These data indicate that HL-60/AR cells do not possess either de novo or amplified high-molecular-weight surface-membrane proteins; instead, existing proteins are hypoglycosylated. These results also show that HL-60/AR cells exhibit the multidrug-resistant phenotype in association with altered membrane glycoproteins of both high (220-95 kDa) and low molecular weight (21 kDa), but without overexpression of the P-glycoprotein. Furthermore, in HL-60/S cells, the multidrug-resistant phenotype is partially inducible by inhibition of N-linked glycosylation of cell-surfac proteins.
UR - http://www.scopus.com/inward/record.url?scp=0025863001&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0025863001&partnerID=8YFLogxK
U2 - 10.1007/BF00689695
DO - 10.1007/BF00689695
M3 - Article
C2 - 1711935
AN - SCOPUS:0025863001
SN - 0344-5704
VL - 28
SP - 93
EP - 101
JO - Cancer Chemotherapy and Pharmacology
JF - Cancer Chemotherapy and Pharmacology
IS - 2
ER -