Membrane glycoprotein changes associated with anthracycline resistance in HL-60 cells

James E. Gervasoni, Robert N. Taub, Michelle Rosado, Sindu Krishna, Valerie J. Stewart, Daniel M. Knowles, Kapil Bhalla, Douglas D. Ross, Michael A. Baker, Jose Lutzky, Alexander A. Hindenburg

Research output: Contribution to journalArticlepeer-review

8 Scopus citations


The glycoproteins on the surface of HL-60/S wild-type, drug-sensitive human leukemia cells and HL-60/AR anthracycline-resistant cells which do not overexpress the P-glycoprotein, were characterized by labeling with [35S]-methionine, NaB[3H4], phosphorus 32, or sodium iodide I 125. HL-60/S and HL-60/AR cell lysates and membrane fractions tagged with [35S]-methionine or phosphorus 32 showed no significant differences in their protein patterns as analyzed by sodium dodecyl sulfatepolyacrylamide gel electrophoresis (SDS-PAGE) and by autoradiography. HL-60/S cells labeled with NaB[3H4] yielded glycoproteins that were smeared predominantly in the molecular-weight range of 210,000 and 160,000 Da, with pI values ranging between pH 4 and pH 4.4. In contrast, NaB[3H4]-labeled HL-60/AR cells showed 7-8 discrete glycoproteins within a molecular-weight range of 170,000 and 140,000 Da, with pI values also ranging between pH 4 and pH 4.4. In addition, [3H]-glucosamine incorporation into HL-60/S and HL-60/AR cells revealed that the latter showed lower uptake of [3H]-glucosamine than did the former. Following treatment with tunicamycin, [3H]-glucosamine uptake in HL-60/S cells decreased, whereas that in HL-60/AR cells remained unchanged. Surface-membrane radioiodination of HL-60/S and HL-60/AR cells showed two distinct protein electrophoretic patterns, with differences being observed in both the high-(220-95 kDa) and low-molecular-weight ranges (21 kDa). Flow cytometric analysis of HL-60/S and HL-60/AR cells using myeloid and lymphoid antigen-specific antibodies demonstrated no antigenic differences between HL-60/S and HL-60/AR cells. HL-60/S cells incubated in the presence of tunicamycin, an inhibitor of N-linked glycosylation, or the protein kinase C agonist phorbol 12-myristate 13-acetate (PMA) developed a glycoprotein pattern similar to that observed in HL-60/AR cells. In addition, tunicamycin treatment of HL-60/S cells decreased daunorubicin (DNR) retention and altered its intracellular distribution as compared with that in HL-60/AR cells. These data indicate that HL-60/AR cells do not possess either de novo or amplified high-molecular-weight surface-membrane proteins; instead, existing proteins are hypoglycosylated. These results also show that HL-60/AR cells exhibit the multidrug-resistant phenotype in association with altered membrane glycoproteins of both high (220-95 kDa) and low molecular weight (21 kDa), but without overexpression of the P-glycoprotein. Furthermore, in HL-60/S cells, the multidrug-resistant phenotype is partially inducible by inhibition of N-linked glycosylation of cell-surfac proteins.

Original languageEnglish (US)
Pages (from-to)93-101
Number of pages9
JournalCancer Chemotherapy and Pharmacology
Issue number2
StatePublished - Mar 1991
Externally publishedYes

ASJC Scopus subject areas

  • Oncology
  • Toxicology
  • Pharmacology
  • Cancer Research
  • Pharmacology (medical)


Dive into the research topics of 'Membrane glycoprotein changes associated with anthracycline resistance in HL-60 cells'. Together they form a unique fingerprint.

Cite this