TY - JOUR
T1 - Mechanism of Staphylococcus aureus exotoxin A inhibition of Ig production by human B cells
AU - Moseley, Annemarie B.
AU - Huston, David P.
N1 - Copyright:
Copyright 2004 Elsevier B.V., All rights reserved.
PY - 1991/2/1
Y1 - 1991/2/1
N2 - Staphylococcus enterotoxins and toxic shock syndrome toxin 1 are members of a family of exoproteins that are produced by staphylococci and bind specifically to MHC class II molecules. Upon binding to MHC class II molecules, these exoproteins are potent stimulators of T cell proliferation via interaction with specific TCR V-β segments of both CD4+ and CD8+ T cells. These exoproteins also directly stimulate monocytes to secrete IL-1 and TNF-α. Furthermore, these exoproteins have a profound inhibitory effect on Ig production by PBMC. We examined the effects of Staphylococcus enterotoxin A (SEA) on proliferation and Ig production of highly purified human B cells. Our results demonstrated that the binding of SEA to MHC class II molecules on B cells does not alter their ability to proliferate in response to Staphylococcus aureus Cowan strain I (SAC) or to produce Ig in response to SAC plus rIL-2. In contrast, the anti-DR mAb L243 inhibited both B cell proliferation and Ig production. Unable to determine a direct effect of SEA on B cell function, we investigated whether the capacity of SEA to inhibit SAC-induced Ig production by PBMC was T cell-dependent. Our results demonstrated that in the presence of T cells, under appropriate conditions, SEA can either function as a nominal Ag for stimulation of B cell proliferation and Ig production or induce T cell-mediated suppression of Ig production. SEA-induced Ig production required T cell help, which was dependent on pretreatment of the T cells with irradiation or mitomycin C; Ig production was not induced by SEA in the absence of T cells or in the presence of untreated T cells. Furthermore, SEA inhibited Ig production in SAC-stimulated cultures of autologous B cells and untreated T cells; pretreatment of the T cells with irradiation or mitomycin C abrogated SEA-induced inhibition of Ig production. Thus, T cell suppression of SAC-induced Ig production was dependent on T cell proliferation. Similar results were observed with both SEA and toxic shock syndrome toxin 1.
AB - Staphylococcus enterotoxins and toxic shock syndrome toxin 1 are members of a family of exoproteins that are produced by staphylococci and bind specifically to MHC class II molecules. Upon binding to MHC class II molecules, these exoproteins are potent stimulators of T cell proliferation via interaction with specific TCR V-β segments of both CD4+ and CD8+ T cells. These exoproteins also directly stimulate monocytes to secrete IL-1 and TNF-α. Furthermore, these exoproteins have a profound inhibitory effect on Ig production by PBMC. We examined the effects of Staphylococcus enterotoxin A (SEA) on proliferation and Ig production of highly purified human B cells. Our results demonstrated that the binding of SEA to MHC class II molecules on B cells does not alter their ability to proliferate in response to Staphylococcus aureus Cowan strain I (SAC) or to produce Ig in response to SAC plus rIL-2. In contrast, the anti-DR mAb L243 inhibited both B cell proliferation and Ig production. Unable to determine a direct effect of SEA on B cell function, we investigated whether the capacity of SEA to inhibit SAC-induced Ig production by PBMC was T cell-dependent. Our results demonstrated that in the presence of T cells, under appropriate conditions, SEA can either function as a nominal Ag for stimulation of B cell proliferation and Ig production or induce T cell-mediated suppression of Ig production. SEA-induced Ig production required T cell help, which was dependent on pretreatment of the T cells with irradiation or mitomycin C; Ig production was not induced by SEA in the absence of T cells or in the presence of untreated T cells. Furthermore, SEA inhibited Ig production in SAC-stimulated cultures of autologous B cells and untreated T cells; pretreatment of the T cells with irradiation or mitomycin C abrogated SEA-induced inhibition of Ig production. Thus, T cell suppression of SAC-induced Ig production was dependent on T cell proliferation. Similar results were observed with both SEA and toxic shock syndrome toxin 1.
UR - http://www.scopus.com/inward/record.url?scp=0026101415&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0026101415&partnerID=8YFLogxK
M3 - Article
C2 - 1988499
AN - SCOPUS:0026101415
SN - 0022-1767
VL - 146
SP - 826
EP - 832
JO - Journal of Immunology
JF - Journal of Immunology
IS - 3
ER -