Matrix recovery from quantized and corrupted measurements

Andrew S. Lan, Christoph Studer, Richard G. Baraniuk

Research output: Chapter in Book/Report/Conference proceedingConference contribution

20 Scopus citations

Abstract

This paper deals with the recovery of an unknown, low-rank matrix from quantized and (possibly) corrupted measurements of a subset of its entries. We develop statistical models and corresponding (multi-)convex optimization algorithms for quantized matrix completion (Q-MC) and quantized robust principal component analysis (Q-RPCA). In order to take into account the quantized nature of the available data, we jointly learn the underlying quantization bin boundaries and recover the low-rank matrix, while removing potential (sparse) corruptions. Experimental results on synthetic and two real-world collaborative filtering datasets demonstrate that directly operating with the quantized measurements - rather than treating them as real values - results in (often significantly) lower recovery error if the number of quantization bins is less than about 10.

Original languageEnglish (US)
Title of host publication2014 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2014
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4973-4977
Number of pages5
ISBN (Print)9781479928927
DOIs
StatePublished - Jan 1 2014
Event2014 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2014 - Florence, Italy
Duration: May 4 2014May 9 2014

Other

Other2014 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2014
CountryItaly
CityFlorence
Period5/4/145/9/14

Keywords

  • convex optimization
  • matrix completion
  • Quantization
  • robust principal component analysis

ASJC Scopus subject areas

  • Signal Processing
  • Software
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Matrix recovery from quantized and corrupted measurements'. Together they form a unique fingerprint.

Cite this