TY - JOUR
T1 - Low-dose carbon monoxide inhalation prevents development of chronic allograft nephropathy
AU - Neto, Joao Seda
AU - Nakao, Atsunori
AU - Toyokawa, Hideyoshi
AU - Nalesnik, Michael A.
AU - Romanosky, Anna Jeanine
AU - Kimizuka, Kei
AU - Kaizu, Takashi
AU - Hashimoto, Naoki
AU - Azhipa, Olga
AU - Stolz, Donna B.
AU - Choi, Augustine M.K.
AU - Murase, Noriko
N1 - Copyright:
Copyright 2008 Elsevier B.V., All rights reserved.
PY - 2006/2
Y1 - 2006/2
N2 - Chronic allograft nephropathy (CAN) is the primary cause for late kidney allograft loss. Carbon monoxide (CO), a product of heme metabolism by heme oxygenases, is known to impart protection against various stresses. We hypothesized that CO could minimize the chronic fibroinflammatory process and protect kidney allografts from CAN. Lewis kidney grafts were orthotopically transplanted into binephrectomized Brown-Norway rats under short-course tacrolimus. Recipients were maintained in room air or exposed to CO at 20 parts/million for 30 days after transplant. Efficacy of inhaled CO was studied at day 30 and day 80. Isografts maintained normal kidney function throughout the experiment with creatinine clearance of ∼1.5 ml/min. Renal allograft function in air controls progressively deteriorated, and creatinine clearance declined to 0.2 ± 0.1 ml/min by day 80 with substantial proteinuria. CO-treated animals had significantly better creatinine clearance (1.3 ± 0.2 ml/min) with minimal proteinuria. Histological examination revealed the development of progressive CAN in air-exposed grafts, whereas CO-treated grafts had minimal tubular atrophy and interstitial fibrosis, with negligible collagen IV deposition. In vitro analyses revealed that CO-treated recipients had significantly less T cell proliferation against donor peptides via the indirect allorecognition pathway and less anti-donor IgG antibodies compared with air controls. Intragraft mRNA levels for chemokines (regulated on activation normal T cell expressed and secreted, macrophage inflammatory protein-1α, chemokine receptors (CCR1, CXCR3, CXCR5), IL-2, and intercellular adhesion molecule-1 were significantly decreased in CO-treated than in air-treated allografts. Furthermore, reduction of blood flow in air-treated allografts was prevented with CO. In conclusion, inhaled CO at a low concentration efficiently abrogates chronic fibroinflammatory changes associated with CAN and improves long-term renal allograft function.
AB - Chronic allograft nephropathy (CAN) is the primary cause for late kidney allograft loss. Carbon monoxide (CO), a product of heme metabolism by heme oxygenases, is known to impart protection against various stresses. We hypothesized that CO could minimize the chronic fibroinflammatory process and protect kidney allografts from CAN. Lewis kidney grafts were orthotopically transplanted into binephrectomized Brown-Norway rats under short-course tacrolimus. Recipients were maintained in room air or exposed to CO at 20 parts/million for 30 days after transplant. Efficacy of inhaled CO was studied at day 30 and day 80. Isografts maintained normal kidney function throughout the experiment with creatinine clearance of ∼1.5 ml/min. Renal allograft function in air controls progressively deteriorated, and creatinine clearance declined to 0.2 ± 0.1 ml/min by day 80 with substantial proteinuria. CO-treated animals had significantly better creatinine clearance (1.3 ± 0.2 ml/min) with minimal proteinuria. Histological examination revealed the development of progressive CAN in air-exposed grafts, whereas CO-treated grafts had minimal tubular atrophy and interstitial fibrosis, with negligible collagen IV deposition. In vitro analyses revealed that CO-treated recipients had significantly less T cell proliferation against donor peptides via the indirect allorecognition pathway and less anti-donor IgG antibodies compared with air controls. Intragraft mRNA levels for chemokines (regulated on activation normal T cell expressed and secreted, macrophage inflammatory protein-1α, chemokine receptors (CCR1, CXCR3, CXCR5), IL-2, and intercellular adhesion molecule-1 were significantly decreased in CO-treated than in air-treated allografts. Furthermore, reduction of blood flow in air-treated allografts was prevented with CO. In conclusion, inhaled CO at a low concentration efficiently abrogates chronic fibroinflammatory changes associated with CAN and improves long-term renal allograft function.
KW - Anti-inflammatory effect
KW - Cytoprotection
KW - Kidney transplantation
UR - http://www.scopus.com/inward/record.url?scp=33644868983&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33644868983&partnerID=8YFLogxK
U2 - 10.1152/ajprenal.00026.2005
DO - 10.1152/ajprenal.00026.2005
M3 - Article
C2 - 16131650
AN - SCOPUS:33644868983
VL - 290
SP - F324-F334
JO - American Journal of Physiology - Heart and Circulatory Physiology
JF - American Journal of Physiology - Heart and Circulatory Physiology
SN - 0363-6143
IS - 2
ER -