Loss of bone morphogenetic protein-binding endothelial regulator causes insulin resistance

Hua Mao, Luge Li, Qiying Fan, Aude Angelini, Pradip K. Saha, Huaizhu Wu, Christie M. Ballantyne, Sean M. Hartig, Liang Xie, Xinchun Pi

Research output: Contribution to journalArticlepeer-review

21 Scopus citations

Abstract

Accumulating evidence suggests that chronic inflammation of metabolic tissues plays a causal role in obesity-induced insulin resistance. Yet, how specific endothelial factors impact metabolic tissues remains undefined. Bone morphogenetic protein (BMP)–binding endothelial regulator (BMPER) adapts endothelial cells to inflammatory stress in diverse organ microenvironments. Here, we demonstrate that BMPER is a driver of insulin sensitivity. Both global and endothelial cell-specific inducible knockout of BMPER cause hyperinsulinemia, glucose intolerance and insulin resistance without increasing inflammation in metabolic tissues in mice. BMPER can directly activate insulin signaling, which requires its internalization and interaction with Niemann-Pick C1 (NPC1), an integral membrane protein that transports intracellular cholesterol. These results suggest that the endocrine function of the vascular endothelium maintains glucose homeostasis. Of potential translational significance, the delivery of BMPER recombinant protein or its overexpression alleviates insulin resistance and hyperglycemia in high-fat diet-fed mice and Leprdb/db (db/db) diabetic mice. We conclude that BMPER exhibits therapeutic potential for the treatment of diabetes.

Original languageEnglish (US)
Article number1927
JournalNature Communications
Volume12
Issue number1
DOIs
StatePublished - Dec 1 2021

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Loss of bone morphogenetic protein-binding endothelial regulator causes insulin resistance'. Together they form a unique fingerprint.

Cite this