TY - JOUR
T1 - Localized Surface Plasmon Resonance Sensing and its Interplay with Fluidics
AU - Bhalla, Nikhil
AU - Shen, Amy Q.
N1 - Publisher Copyright:
© 2024 The Authors. Published by American Chemical Society.
PY - 2024/5/14
Y1 - 2024/5/14
N2 - In this Feature Article, we discuss the interplay between fluidics and the localized surface plasmon resonance (LSPR) sensing technique, primarily focusing on its applications in the realm of bio/chemical sensing within fluidic environments. Commencing with a foundational overview of LSPR principles from a sensing perspective, we subsequently showcase the development of a streamlined LSPR chip integrated with microfluidic structures. This integration opens the doors to advanced experiments involving fluid dynamics, greatly expanding the scope of LSPR-based research. Our discussions then turn to the practical implementation of LSPR and microfluidics in real-time biosensing, with a specific emphasis on monitoring DNA polymerase activity. Additionally, we illustrate the direct sensing of biological fluids, exemplified by the analysis of urine, while also shedding light on a unique particle assembly process that occurs on LSPR chips. We not only discuss the significance of LSPR sensing but also explore its potential to investigate a plethora of phenomena at liquid-liquid and solid-liquid interfaces. This is particularly noteworthy, as existing transduction methods and sensors fall short in fully comprehending these interfacial phenomena. Concluding our discussion, we present a futuristic perspective that provides insights into potential opportunities emerging at the intersection of fluidics and LSPR sensing.
AB - In this Feature Article, we discuss the interplay between fluidics and the localized surface plasmon resonance (LSPR) sensing technique, primarily focusing on its applications in the realm of bio/chemical sensing within fluidic environments. Commencing with a foundational overview of LSPR principles from a sensing perspective, we subsequently showcase the development of a streamlined LSPR chip integrated with microfluidic structures. This integration opens the doors to advanced experiments involving fluid dynamics, greatly expanding the scope of LSPR-based research. Our discussions then turn to the practical implementation of LSPR and microfluidics in real-time biosensing, with a specific emphasis on monitoring DNA polymerase activity. Additionally, we illustrate the direct sensing of biological fluids, exemplified by the analysis of urine, while also shedding light on a unique particle assembly process that occurs on LSPR chips. We not only discuss the significance of LSPR sensing but also explore its potential to investigate a plethora of phenomena at liquid-liquid and solid-liquid interfaces. This is particularly noteworthy, as existing transduction methods and sensors fall short in fully comprehending these interfacial phenomena. Concluding our discussion, we present a futuristic perspective that provides insights into potential opportunities emerging at the intersection of fluidics and LSPR sensing.
UR - http://www.scopus.com/inward/record.url?scp=85192135815&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85192135815&partnerID=8YFLogxK
U2 - 10.1021/acs.langmuir.4c00374
DO - 10.1021/acs.langmuir.4c00374
M3 - Review article
C2 - 38684953
AN - SCOPUS:85192135815
SN - 0743-7463
VL - 40
SP - 9842
EP - 9854
JO - Langmuir
JF - Langmuir
IS - 19
ER -