TY - GEN
T1 - Live-wire-based segmentation of 3D anatomical structures for image-guided lung interventions
AU - Lu, Kongkuo
AU - Xu, Sheng
AU - Xue, Zhong
AU - Wong, Stephen T.
PY - 2012
Y1 - 2012
N2 - Computed Tomography (CT) has been widely used for assisting in lung cancer detection/diagnosis and treatment. In lung cancer diagnosis, suspect lesions or regions of interest (ROIs) are usually analyzed in screening CT scans. Then, CT-based image-guided minimally invasive procedures are performed for further diagnosis through bronchoscopic or percutaneous approaches. Thus, ROI segmentation is a preliminary but vital step for abnormality detection, procedural planning, and intra-procedural guidance. In lung cancer diagnosis, such ROIs can be tumors, lymph nodes, nodules, etc., which may vary in size, shape, and other complication phenomena. Manual segmentation approaches are time consuming, user-biased, and cannot guarantee reproducible results. Automatic methods do not require user input, but they are usually highly application-dependent. To counterbalance among efficiency, accuracy, and robustness, considerable efforts have been contributed to semiautomatic strategies, which enable full user control, while minimizing human interactions. Among available semi-automatic approaches, the live-wire algorithm has been recognized as a valuable tool for segmentation of a wide range of ROIs from chest CT images. In this paper, a new 3D extension of the traditional 2D live-wire method is proposed for 3D ROI segmentation. In the experiments, the proposed approach is applied to a set of anatomical ROIs from 3D chest CT images, and the results are compared with the segmentation derived from a previous evaluated live-wire-based approach.
AB - Computed Tomography (CT) has been widely used for assisting in lung cancer detection/diagnosis and treatment. In lung cancer diagnosis, suspect lesions or regions of interest (ROIs) are usually analyzed in screening CT scans. Then, CT-based image-guided minimally invasive procedures are performed for further diagnosis through bronchoscopic or percutaneous approaches. Thus, ROI segmentation is a preliminary but vital step for abnormality detection, procedural planning, and intra-procedural guidance. In lung cancer diagnosis, such ROIs can be tumors, lymph nodes, nodules, etc., which may vary in size, shape, and other complication phenomena. Manual segmentation approaches are time consuming, user-biased, and cannot guarantee reproducible results. Automatic methods do not require user input, but they are usually highly application-dependent. To counterbalance among efficiency, accuracy, and robustness, considerable efforts have been contributed to semiautomatic strategies, which enable full user control, while minimizing human interactions. Among available semi-automatic approaches, the live-wire algorithm has been recognized as a valuable tool for segmentation of a wide range of ROIs from chest CT images. In this paper, a new 3D extension of the traditional 2D live-wire method is proposed for 3D ROI segmentation. In the experiments, the proposed approach is applied to a set of anatomical ROIs from 3D chest CT images, and the results are compared with the segmentation derived from a previous evaluated live-wire-based approach.
KW - 3D CT imaging
KW - Image-guided diagnosis
KW - Live wire
KW - Lung cancer
KW - Segmentation
UR - http://www.scopus.com/inward/record.url?scp=84860704862&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84860704862&partnerID=8YFLogxK
U2 - 10.1117/12.910817
DO - 10.1117/12.910817
M3 - Conference contribution
AN - SCOPUS:84860704862
SN - 9780819489630
T3 - Progress in Biomedical Optics and Imaging - Proceedings of SPIE
BT - Medical Imaging 2012
T2 - Medical Imaging 2012: Image Processing
Y2 - 6 February 2012 through 9 February 2012
ER -