TY - JOUR
T1 - Liposomal encapsulation masks genotoxicity of a chemotherapeutic agent in regulatory toxicology assessments
AU - Alexander, Jenolyn
AU - Aguirre-Villarreal, David
AU - Godin, Biana
PY - 2017/4
Y1 - 2017/4
N2 - The burgeoning application of nanotechnology to a variety of industries including cosmetics, food, medicine and materials has led to the exploration of nanotoxicology as a trending subject of research. However the role of a nanovector, in affecting the mutagenicity of its therapeutic payload has not yet been investigated. In this study, we compare the mutagenicity of the free drug - doxorubicin hydrochloride with its nanoencapsulated form - doxorubicin loaded liposome, using conventional methods required for regulatory approval. Contrary to free doxorubicin, doxorubicin encapsulated liposome expressed a significantly lower mutant frequency in the Ames assay, and was non-genotoxic in the in vitro micronucleus assay. Further investigation of the systems' cytotoxicity and their interaction with the bacterial cell envelope, suggests that the modification of the test parameters and release of the encapsulated drug prior to the Ames test show comparable mutagenic potential of the nanotherapeutic system to a free drug.
AB - The burgeoning application of nanotechnology to a variety of industries including cosmetics, food, medicine and materials has led to the exploration of nanotoxicology as a trending subject of research. However the role of a nanovector, in affecting the mutagenicity of its therapeutic payload has not yet been investigated. In this study, we compare the mutagenicity of the free drug - doxorubicin hydrochloride with its nanoencapsulated form - doxorubicin loaded liposome, using conventional methods required for regulatory approval. Contrary to free doxorubicin, doxorubicin encapsulated liposome expressed a significantly lower mutant frequency in the Ames assay, and was non-genotoxic in the in vitro micronucleus assay. Further investigation of the systems' cytotoxicity and their interaction with the bacterial cell envelope, suggests that the modification of the test parameters and release of the encapsulated drug prior to the Ames test show comparable mutagenic potential of the nanotherapeutic system to a free drug.
U2 - 10.1016/j.nano.2016.12.016
DO - 10.1016/j.nano.2016.12.016
M3 - Article
C2 - 28062373
VL - 13
SP - 829
EP - 833
JO - Nanomedicine: Nanotechnology, Biology, and Medicine
JF - Nanomedicine: Nanotechnology, Biology, and Medicine
SN - 1549-9634
IS - 3
ER -