TY - JOUR
T1 - Lipoprotein composition in insulin-dependent diabetes mellitus with chronic renal failure
T2 - Effect of kidney and pancreas transplantation
AU - Hughes, Thomas A.
AU - Gaber, A. Osama
AU - Amiri, Hosein S.
AU - Wang, Xiaohu
AU - Elmer, Debra S.
AU - Winsett, Rebecca P.
AU - Hathaway, Donna K.
AU - Hughes, Suzanne M.
AU - Ghawji, Maher
N1 - Funding Information:
From the Departments of‘ Medicine and SurgeT. Universiy of Tennessee. Memphis, TN. Submitted December 19. 1992: accepted April 12. 1993. Supported by the General Clinical Research Center (MO1 RR0021 1) and the Diabetes Trust Fund in Medical Center East, Bitming-ham, AL. Presented in part at the Third International Congress on Pancreatic and Islet Transplantation and $vmposium on Ar-tificiali nsulin De& e’): Systems, Lyon. France. June 6-8, 1991. Published in abstract form in Transplant Proc 24:840-841. 1992. Address reprint requests to Thomas A. Hughes. MD, Division of Endoctinology and Metabolism. Department of Medicine, lJnh~ers$v of Tennessee, Memphis, 9.51 Court Al,e, Room 34OM, Memphis. TN 38163. Copyright (1 1994 by W.B . Saunders Cornpan! 00%0495194/4.?03-0012$03.00l0
PY - 1994/3
Y1 - 1994/3
N2 - Chronic renal failure (CRF) in nondiabetics is associated with a number of lipoprotein abnormalities that place these patients at high risk for atherosclerosis. This study compared the lipoprotein composition of nondiabetic controls (n = 68) with that of patients with insulin-dependent diabetes mellitus ([IDDM] n = 13) and of patients with IDDM and CRF ([IDDM + CRF] n = 74). Six lipoprotein subfractions (very-low-density lipoprotein [VLDL], intermediate-density lipoprotein [IDL], low-density lipoprotein [LDL], high-density lipoprotein-light [HDL-L], HDL-medium [HDL-M], and HDL-dense [HDL-D]) were isolated by rapid gradient ultracentrifugation using a fixed-angle rotor. The apolipoprotein (by reverse-phase high-performance liquid chromatography [HPLC]) and lipid (by enzymatic assays) composition of each subfraction was determined. The only abnormalities found in IDDM patients were increases in IDL and HDL-L triglyceride (TG) levels and an increase in the HDL-L free cholesterol (FC) level. The IDDM + CRF group had multiple abnormalities including (1) elevated TG, apolipoprotein (apo) C-II, and apo C-III levels in all lipid subfractions; (2) elevated VLDL and IDL apo B, TG, FC, cholesterol ester (CE), and phospholipid (PL) levels (with an increased CE TG ratio in VLDL only); (3) decreased HDL-M apo A-I, apo A-II, CE, and PL levels, but an increased HDL-D apo A-I level; and (4) decreased lecithin: cholesterol acyltransferase (LCAT) activity. Twenty-five of the IDDM + CRF patients underwent combined pancreas and kidney (P + K) transplantation, and 12 patients received only a kidney transplant. Lipoprotein composition was determined at 3, 6, and 12 months posttransplant. Both types of transplantation resulted in similar alterations in lipoprotein composition, even though there was essential normalization of blood glucose levels in most of the patients who received a pancreas transplant (hemoglobin A1C [HbA1C], 9.1% ± 1.1% v 5.7% ± 0.3% at 12 months, P < .01). These posttransplant changes included (1) no improvement in the elevated TG level in any lipid subfraction even though there was some reduction in apo C-III levels in VLDL; (2) reductions in levels of VLDL and IDL apo B but increases in LDL apo B; (3) increases in HDL apo C-III and FC concentrations despite an increase in LCAT activity; and (4) increases in apo A-I levels in HDL-L and HDL-M. The addition of a pancreas to a kidney transplant had no obvious impact on the lipoproteins. This is probably because the difference in glycemic control between the P + K group and the kidney-alone group is usually not associated with substantial abnormalities in lipoprotein composition. This study is too short to address the issue of whether pancreas transplantation can reduce the risk of atherosclerosis associated with IDDM and CRF. The immunosuppressive drugs and persistently abnormal renal function following transplantation probably adversely affected the lipoproteins. This is unfortunate because of the added urgency for lipoprotein normalization in these patients, since they are very likely to have advanced atherosclerotic disease, having typically experienced at least one cycle of renal failure and dialysis.
AB - Chronic renal failure (CRF) in nondiabetics is associated with a number of lipoprotein abnormalities that place these patients at high risk for atherosclerosis. This study compared the lipoprotein composition of nondiabetic controls (n = 68) with that of patients with insulin-dependent diabetes mellitus ([IDDM] n = 13) and of patients with IDDM and CRF ([IDDM + CRF] n = 74). Six lipoprotein subfractions (very-low-density lipoprotein [VLDL], intermediate-density lipoprotein [IDL], low-density lipoprotein [LDL], high-density lipoprotein-light [HDL-L], HDL-medium [HDL-M], and HDL-dense [HDL-D]) were isolated by rapid gradient ultracentrifugation using a fixed-angle rotor. The apolipoprotein (by reverse-phase high-performance liquid chromatography [HPLC]) and lipid (by enzymatic assays) composition of each subfraction was determined. The only abnormalities found in IDDM patients were increases in IDL and HDL-L triglyceride (TG) levels and an increase in the HDL-L free cholesterol (FC) level. The IDDM + CRF group had multiple abnormalities including (1) elevated TG, apolipoprotein (apo) C-II, and apo C-III levels in all lipid subfractions; (2) elevated VLDL and IDL apo B, TG, FC, cholesterol ester (CE), and phospholipid (PL) levels (with an increased CE TG ratio in VLDL only); (3) decreased HDL-M apo A-I, apo A-II, CE, and PL levels, but an increased HDL-D apo A-I level; and (4) decreased lecithin: cholesterol acyltransferase (LCAT) activity. Twenty-five of the IDDM + CRF patients underwent combined pancreas and kidney (P + K) transplantation, and 12 patients received only a kidney transplant. Lipoprotein composition was determined at 3, 6, and 12 months posttransplant. Both types of transplantation resulted in similar alterations in lipoprotein composition, even though there was essential normalization of blood glucose levels in most of the patients who received a pancreas transplant (hemoglobin A1C [HbA1C], 9.1% ± 1.1% v 5.7% ± 0.3% at 12 months, P < .01). These posttransplant changes included (1) no improvement in the elevated TG level in any lipid subfraction even though there was some reduction in apo C-III levels in VLDL; (2) reductions in levels of VLDL and IDL apo B but increases in LDL apo B; (3) increases in HDL apo C-III and FC concentrations despite an increase in LCAT activity; and (4) increases in apo A-I levels in HDL-L and HDL-M. The addition of a pancreas to a kidney transplant had no obvious impact on the lipoproteins. This is probably because the difference in glycemic control between the P + K group and the kidney-alone group is usually not associated with substantial abnormalities in lipoprotein composition. This study is too short to address the issue of whether pancreas transplantation can reduce the risk of atherosclerosis associated with IDDM and CRF. The immunosuppressive drugs and persistently abnormal renal function following transplantation probably adversely affected the lipoproteins. This is unfortunate because of the added urgency for lipoprotein normalization in these patients, since they are very likely to have advanced atherosclerotic disease, having typically experienced at least one cycle of renal failure and dialysis.
UR - http://www.scopus.com/inward/record.url?scp=0028204861&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0028204861&partnerID=8YFLogxK
U2 - 10.1016/0026-0495(94)90102-3
DO - 10.1016/0026-0495(94)90102-3
M3 - Article
C2 - 8139482
AN - SCOPUS:0028204861
SN - 0026-0495
VL - 43
SP - 333
EP - 347
JO - Metabolism
JF - Metabolism
IS - 3
ER -