Linear parameter varying control of a robot manipulator for aortic valve implantation

A. Ramezanifar, A. Salimi, J. Mohammadpour, A. Kilicarslan, K. Grigoriadis, N. V. Tsekos

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

In this paper, we propose a linear parameter varying (LPV) control design approach for trajectory tracking in a robotic system, intended to be involved in an image-guided teleoperated cardiac surgery. The robot is eventually aimed to guide a 3 degree-of-freedom medical tool (a catheter) inside the left ventricle (LV) and achieve the implantation of a prosthetic aortic valve. The successful delivery of the valve from the apical entrance to the aortic annulus strongly depends on the precise navigation of the catheter such that its probable collision with the LV's changing environment is avoided. The LPV control strategy is utilized here due to its ability to capture the nonlinearities of the designed robot manipulator and adapt in real-time based on the varying end effector's angle. The simulation studies demonstrate promising results achieved for a guaranteed safe navigation through LV.

Original languageEnglish (US)
Title of host publicationASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control, DSCC 2011
Pages121-127
Number of pages7
DOIs
StatePublished - 2011
EventASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control, DSCC 2011 - Arlington, VA, United States
Duration: Oct 31 2011Nov 2 2011

Publication series

NameASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control, DSCC 2011
Volume2

Other

OtherASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control, DSCC 2011
Country/TerritoryUnited States
CityArlington, VA
Period10/31/1111/2/11

ASJC Scopus subject areas

  • Fluid Flow and Transfer Processes
  • Control and Systems Engineering

Fingerprint

Dive into the research topics of 'Linear parameter varying control of a robot manipulator for aortic valve implantation'. Together they form a unique fingerprint.

Cite this