Leveraging massive MIMO spatial degrees of freedom to reduce random access delay

Fatima Ahsan, Ashutosh Sabharwal

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

Random access is a crucial building block for nearly all wireless networks, and impacts both the overall spectral efficiency and latency in communication. In this paper, we analytically show that the spatial degrees of freedom, e.g. available in massive MIMO systems, can potentially be leveraged to reduce random access latency. Using one-ring propagation model, we evaluate how the random access collision probability depends on the aperture size of the array and the spread of user's signal Angle-of-Arrivals (AoAs) at the base-station, as a function of the user-density and the number of random access codes. Our numerical evaluation shows that for practically sized large arrays in outdoor environments, a significant reduction in collision probability is possible, which in turn can decrease the random access latency.

Original languageEnglish (US)
Title of host publicationConference Record of 51st Asilomar Conference on Signals, Systems and Computers, ACSSC 2017
EditorsMichael B. Matthews
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2007-2011
Number of pages5
ISBN (Electronic)9781538618233
DOIs
StatePublished - Jul 2 2017
Event51st Asilomar Conference on Signals, Systems and Computers, ACSSC 2017 - Pacific Grove, United States
Duration: Oct 29 2017Nov 1 2017

Publication series

NameConference Record of 51st Asilomar Conference on Signals, Systems and Computers, ACSSC 2017
Volume2017-October

Conference

Conference51st Asilomar Conference on Signals, Systems and Computers, ACSSC 2017
Country/TerritoryUnited States
CityPacific Grove
Period10/29/1711/1/17

ASJC Scopus subject areas

  • Control and Optimization
  • Computer Networks and Communications
  • Hardware and Architecture
  • Signal Processing
  • Biomedical Engineering
  • Instrumentation

Fingerprint

Dive into the research topics of 'Leveraging massive MIMO spatial degrees of freedom to reduce random access delay'. Together they form a unique fingerprint.

Cite this