Levels of 17β-estradiol receptors expressed in embryonic and adult zebrafish following in vivo treatment of natural or synthetic ligands

Gayathri Chandrasekar, Amena Archer, Jan Åke Gustafsson, Monika Andersson Lendahl

Research output: Contribution to journalArticlepeer-review

70 Scopus citations


The nuclear receptors encompass a group of regulatory proteins involved in a number of physiological processes. The estrogen receptors (ERs), of which one alpha and one beta form exist in mammals function as transcription factors in response to 17β-estradiol (E2). In zebrafish there are three gene products of estrogen receptors and they are denoted esr1 (ERalpha), esr2a (ERbeta2) and esr2b (ERbeta1). Total RNA of zebrafish early life stages (<3, 6, 12, 24, 48, 72, 96 and 120 hours post fertilization) and of adult fish (liver, intestine, eye, heart, brain, ovary, testis, gill, swim bladder and kidney) were isolated following in vivo exposures. Using specific primers for each of the three zebrafish ERs the expression levels were quantified using real time PCR methodology. It was shown that in absence of exposure all three estrogen receptors were expressed in adult fish. The levels of expression of two of these three ER genes, the esr1 and esr2a were altered in organs such as liver, intestine, brain and testis in response to ligand (E2, diethylstilbestrol or 4-nonylphenol). During embryogenesis two of the three receptor genes, esr1 and esr2b were expressed, and in presence of ligand the mRNA levels of these two genes increased. The conclusions are i) estrogen receptor genes are expressed during early development ii) altered expression of esr genes in response to ligand is dependent on the cellular context; iii) the estrogenic ligand 4-nonylphenol, a manufactured compound commonly found in sewage of water treatment plants, acts as an agonist of the estrogen receptor during development and has both agonist and antagonist properties in tissues of adult fish. This knowledge of esr gene function in development and in adult life will help to understand mechanisms of interfering mimicking endocrine chemicals in vivo.

Original languageEnglish (US)
Article numbere9678
JournalPLoS ONE
Issue number3
StatePublished - Mar 12 2010

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • General


Dive into the research topics of 'Levels of 17β-estradiol receptors expressed in embryonic and adult zebrafish following in vivo treatment of natural or synthetic ligands'. Together they form a unique fingerprint.

Cite this