Abstract
Prevalent bacterial colonization and subsequent biofilm formation in biomedical implants demand for improved antimicrobial properties of these devices. To address this problem, immobilizing antimicrobial peptides (AMPs) on implants is a promising solution because of their biocompatibility and lesser likelihood to incur pathogen resistance. This study presents a systematic approach towards evaluating the feasibility of Lasioglossin-III (Lasio-III) (a new bee venom AMP, found in Lasioglossum laticeps) to be tethered onto biodevices. Antimicrobial characterization of Lasio-III in solution confirms the peptide's membranolytic mode of action and its salt-resistant, broad antimicrobial spectrum activity and anti-biofilm properties against Gram negative and Gram positive bacteria. Lassio-III was covalently immobilized on silicon surfaces using APTES and PEG spacers of varying lengths. Surface characterization of the AMP-immobilized silicon was done using water contact angle measurements, XPS analysis and ellipsometry. Even at modest surface peptide concentrations of ∼180 ng cm-2, Lassio-III showed antibacterial activities which were further enhanced with increasing PEG spacer lengths, as determined by live CFU counting and ATP leakage experiments. This proof-of-concept study demonstrates the potential of Lasio-III as an antimicrobial coating candidate.
Original language | English (US) |
---|---|
Pages (from-to) | 9534-9543 |
Number of pages | 10 |
Journal | RSC Advances |
Volume | 3 |
Issue number | 24 |
DOIs | |
State | Published - 2013 |
ASJC Scopus subject areas
- General Chemistry
- General Chemical Engineering