Laser-targeted ablation of the zebrafish embryonic ventricle: A novel model of cardiac injury and repair

Gianfranco Matrone, Jonathan M. Taylor, Kathryn S. Wilson, James Baily, Gordon D. Love, John M. Girkin, John J. Mullins, Carl S. Tucker, Martin A. Denvir

Research output: Contribution to journalArticle

21 Scopus citations

Abstract

Background While the adult zebrafish (Danio rerio) heart demonstrates a remarkable capacity for self-renewal following apical resection little is known about the response to injury in the embryonic heart. Methods Injury to the beating zebrafish embryo heart was induced by laser using a transgenic zebrafish expressing cardiomyocyte specific green fluorescent protein. Changes in ejection fraction (EF), heart rate (HR), and caudal vein blood flow (CVBF) assessed by video capture techniques were assessed at 2, 24 and 48 h post-laser. Change in total and mitotic ventricular cardiomyocyte number following laser injury was also assessed by counting respectively DAPI (VCt) and Phospho-histone H3 (VCm) positive nuclei in isolated hearts using confocal microscopy. Results Laser injury to the ventricle resulted in bradycardia and mild bleeding into the pericardium. At 2 h post-laser injury, there was a significant reduction in cardiac performance in lasered-hearts compared with controls (HR 117 ± 11 vs 167 ± 9 bpm, p ≤ 0.001; EF 14.1 ± 1.8 vs 20.1 ± 1.3%, p ≤ 0.001; CVBF 103 ± 15 vs 316 ± 13μms- 1, p ≤ 0.001, respectively). Isolated hearts showed a significant reduction in VCt at 2 h post-laser compared to controls (195 ± 15 vs 238 ± 15, p ≤ 0.05). Histology showed necrosis and apoptosis (TUNEL assay) at the site of laser injury. At 24 h post-laser cardiac performance and VCt had recovered fully to control levels. Pretreatment with the cell-cycle inhibitor, aphidicolin, significantly inhibited functional recovery of the ventricle accompanied by a significant inhibition of cardiomyocyte proliferation. Conclusions Laser-targeted injury of the zebrafish embryonic heart is a novel and reproducible model of cardiac injury and repair suitable for pharmacological and molecular studies.

Original languageEnglish (US)
Pages (from-to)3913-3919
Number of pages7
JournalInternational Journal of Cardiology
Volume168
Issue number4
DOIs
StatePublished - Oct 9 2013

Keywords

  • Heart
  • Injury
  • Laser
  • Repair
  • Zebrafish

ASJC Scopus subject areas

  • Cardiology and Cardiovascular Medicine

Fingerprint Dive into the research topics of 'Laser-targeted ablation of the zebrafish embryonic ventricle: A novel model of cardiac injury and repair'. Together they form a unique fingerprint.

Cite this