Large-scale in silico mapping of complex quantitative traits in inbred mice

Pengyuan Liu, Haris Vikis, Yan Lu, Daolong Wang, Ming You

Research output: Contribution to journalArticlepeer-review

31 Scopus citations

Abstract

Understanding the genetic basis of common disease and disease-related quantitative traits will aid in the development of diagnostics and therapeutics. The processs of gene discovery can be sped up by rapid and effective integration of well-defined mouse genome and phenome data resources. We describe here an in silica gene-discovery strategy through genome-wide association (GWA) scans in inbred mice with a wide range of genetic variation. We identified 937 quantitative loci (QTLs) from a survey of 173 mouse phenotypes, which include models of human disease (atherosclerosis, cardiovascular disease, cancer and obesity) as well as behavioral, hematological, immunological, metabolic and neurological traits. 67% of QTLs were refined into, genomic regions <0.5 Mb with ∼40-fold increase in mapping precision as compared with classical linkage analysis. This makes for more efficient identification of the genes that underlie disease. We have identified, two QTL genes, Adam h2 and Cdh2, as causal genetic variants for atherogenic diet-induced obesity. Our findings demonstrate that GWA analysis in mice has the potential to resolve multiple tightly linked QTLs achieve single-gene resolution, These higu-resolution QTL data can serve as a primary resource for positional cloning and gene identification in the research community.

Original languageEnglish (US)
Article numbere651
JournalPLoS ONE
Volume2
Issue number7
DOIs
StatePublished - Jul 25 2007

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)

Fingerprint

Dive into the research topics of 'Large-scale in silico mapping of complex quantitative traits in inbred mice'. Together they form a unique fingerprint.

Cite this