Ischemic preconditioning triggers tyrosine kinase signaling: A potential role for MAPKAP kinase 2

Nilanjana Maulik, Tetsuya Yoshida, You Li Zu, Motoaki Sato, Anirban Banerjee, Dipak K. Das

Research output: Contribution to journalArticlepeer-review

169 Scopus citations


Myocardial adaptation to ischemia has been shown to activate protein tyrosine kinase, potentiating activation of phospholipase D, which leads to the stimulation of mitogen-activated protein (MAP) kinases and MAP kinase- activated protein (MAPKAP) kinase 2. The present study sought to further examine the signal transduction pathway for the MAPKAP kinase 2 activation during ischemic adaptation. Isolated perfused rat hearts were adapted to ischemic stress by repeated ischemia and reperfusion. Hearts were pretreated with genistein to block tyrosine kinase, whereas SB-203580 was used to inhibit p38 MAP kinases. Western blot analysis demonstrated that p38 MAP kinase is phosphorylated during ischemic stress adaptation. Phosphorylation of p38 MAP kinase was blocked by genistein, suggesting that activation of p38 MAP kinase during ischemic adaptation is mediated by a tyrosine kinase signaling pathway. MAPKAP kinase 2 was estimated by following in vitro phosphorylation with recombinant human heat shock protein 27 as specific substrate for MAPKAP kinase 2. Again, both genistein and SB-203580 blocked the activation of MAPKAP kinase 2 during myocardial adaptation to ischemia. Immunofluorescence microscopy with anti-p38-antibody revealed that p38 MAP kinase is primarily localized in perinuclear regions. p38 MAP kinase moves to the nucleus after ischemic stress adaptation. After ischemia and reperfusion, cytoplasmic striations in the myocytes become obvious, indicating translocation of p38 MAP kinase from nucleus to cytoplasm. Corroborating these results, myocardial adaptation to ischemia improved the left ventricular functions and reduced myocardial infarction that were reversed by blocking either tyrosine kinase or p38 MAP kinase. These results demonstrate that myocardial adaptation to ischemia triggers a tyrosine kinase-regulated signaling pathway, leading to the translocation and activation of p38 MAP kinase and implicating a role for MAPKAP kinase 2.

Original languageEnglish
Pages (from-to)H1857-H1864
JournalAmerican Journal of Physiology - Heart and Circulatory Physiology
Issue number5
StatePublished - Nov 1 1998


  • Heat shock protein 27
  • Ischemia-reperfusion
  • Mitogen-activated protein kinase-activated protein kinase 2
  • Mitogen-activated protein kinases
  • p38 mitogen-activated protein kinase

ASJC Scopus subject areas

  • Physiology


Dive into the research topics of 'Ischemic preconditioning triggers tyrosine kinase signaling: A potential role for MAPKAP kinase 2'. Together they form a unique fingerprint.

Cite this