TY - JOUR
T1 - Investigation of temporal and spatial heterogeneities of the immune responses to Bordetella pertussis infection in the lung and spleen of mice via analysis and modeling of dynamic microarray gene expression data
AU - Deng, Nan
AU - Ramirez, Juan C.
AU - Carey, Michelle
AU - Miao, Hongyu
AU - Arias, Cesar A.
AU - Rice, Andrew P.
AU - Wu, Hulin
N1 - Publisher Copyright:
© 2019 The Authors
PY - 2019
Y1 - 2019
N2 - Bordetella pertussis (B. pertussis) is the causative agent of pertussis, also referenced as whooping cough. Although pertussis has been appropriately controlled by routine immunization of infants, it has experienced a resurgence since the beginning of the 21st century. Given that elucidating the immune response to pertussis is a crucial factor to improve therapeutic and preventive treatments, we re-analyzed a time course microarray dataset of B. pertussis infection by applying a newly developed dynamic data analysis pipeline. Our results indicate that the immune response to B. pertussis is highly dynamic and heterologous across different organs during infection. Th1 and Th17 cells, which are two critical types of T helper cell populations in the immune response to B. pertussis, and follicular T helper cells (TFHs), which are also essential for generating antibodies, might be generated at different time points and distinct locations after infection. This phenomenon may indicate that different lymphoid organs may have their unique functions during infection. These findings provide a better understanding of the basic immunology of bacterial infection, which may provide valuable insights for the improvement of pertussis vaccine design in the future.
AB - Bordetella pertussis (B. pertussis) is the causative agent of pertussis, also referenced as whooping cough. Although pertussis has been appropriately controlled by routine immunization of infants, it has experienced a resurgence since the beginning of the 21st century. Given that elucidating the immune response to pertussis is a crucial factor to improve therapeutic and preventive treatments, we re-analyzed a time course microarray dataset of B. pertussis infection by applying a newly developed dynamic data analysis pipeline. Our results indicate that the immune response to B. pertussis is highly dynamic and heterologous across different organs during infection. Th1 and Th17 cells, which are two critical types of T helper cell populations in the immune response to B. pertussis, and follicular T helper cells (TFHs), which are also essential for generating antibodies, might be generated at different time points and distinct locations after infection. This phenomenon may indicate that different lymphoid organs may have their unique functions during infection. These findings provide a better understanding of the basic immunology of bacterial infection, which may provide valuable insights for the improvement of pertussis vaccine design in the future.
UR - http://www.scopus.com/inward/record.url?scp=85070424166&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85070424166&partnerID=8YFLogxK
U2 - 10.1016/j.idm.2019.06.001
DO - 10.1016/j.idm.2019.06.001
M3 - Article
AN - SCOPUS:85070424166
SN - 2468-0427
VL - 4
SP - 215
EP - 226
JO - Infectious Disease Modelling
JF - Infectious Disease Modelling
ER -