Invasion of eukaryotic cells by Borrelia burgdorferi requires β1 integrins and Src kinase activity

Jing Wu, Eric H. Weening, Jennifer B. Faske, Magnus Höök, Jon T. Skare

    Research output: Contribution to journalArticlepeer-review

    50 Scopus citations

    Abstract

    Lyme disease, caused by the bacterium Borrelia burgdorferi, is the most widespread tick-borne infection in the northern hemisphere that results in a multistage disorder with concomitant pathology, including arthritis. During late-stage experimental infection in mice, B. burgdorferi evades the adaptive immune response despite the presence of borrelia-specific bactericidal antibodies. In this study we asked whether B. burgdorferi could invade fibroblasts or endothelial cells as a mechanism to model the avoidance from humorally based clearance. A variation of the gentamicin protection assay, coupled with the detection of borrelial transcripts following gentamicin treatment, indicated that a portion of B. burgdorferi cells were protected in the short term from antibiotic killing due to their ability to invade cultured mammalian cells. Long-term coculture of B. burgdorferi with primary human fibroblasts provided additional support for intracellular protection. Furthermore, decreased invasion of B. burgdorferi in murine fibroblasts that do not synthesize the β1 integrin subunit was observed, indicating that β1-containing integrins are required for optimal borrelial invasion. However, β1-dependent invasion did not require either the α5β1 integrin or the borrelial fibronectin-binding protein BBK32. The internalization of B. burgdorferi was inhibited by cytochalasin D and PP2, suggesting that B. burgdorferi invasion required the reorganization of actin filaments and Src family kinases (SFK), respectively. Taken together, these results suggest that B. burgdorferi can invade and retain viability in nonphagocytic cells in a process that may, in part, help to explain the phenotype observed in untreated experimental infection.

    Original languageEnglish (US)
    Pages (from-to)1338-1348
    Number of pages11
    JournalInfection and Immunity
    Volume79
    Issue number3
    DOIs
    StatePublished - Mar 2011

    ASJC Scopus subject areas

    • Parasitology
    • Microbiology
    • Immunology
    • Infectious Diseases

    Fingerprint

    Dive into the research topics of 'Invasion of eukaryotic cells by Borrelia burgdorferi requires β1 integrins and Src kinase activity'. Together they form a unique fingerprint.

    Cite this