Abstract
Background: Shift work sleep disorders (SWSDs) are associated with the high turnover rates of nurses, and are considered a major medical safety issue. However, initial management can be hampered by insufficient awareness. In recent years, it has become possible to visualize, collect, and analyze the work-life balance of health care workers with irregular sleeping and working habits using wearable sensors that can continuously monitor biometric data under real-life settings. In addition, internet-based cognitive behavioral therapy for psychiatric disorders has been shown to be effective. Application of wearable sensors and machine learning may potentially enhance the beneficial effects of internet-based cognitive behavioral therapy. Objective: In this study, we aim to develop and evaluate the effect of a new internet-based cognitive behavioral therapy for SWSD (iCBTS). This system includes current methods such as medical sleep advice, as well as machine learning well-being prediction to improve the sleep durations of shift workers and prevent declines in their well-being. Methods: This study consists of two phases: (1) preliminary data collection and machine learning for well-being prediction; (2) intervention and evaluation of iCBTS for SWSD. Shift workers in the intensive care unit at Mie University Hospital will wear a wearable sensor that collects biometric data and answer daily questionnaires regarding their well-being. They will subsequently be provided with an iCBTS app for 4 weeks. Sleep and well-being measurements between baseline and the intervention period will be compared. Results: Recruitment for phase 1 ended in October 2019. Recruitment for phase 2 has started in October 2020. Preliminary results are expected to be available by summer 2021. Conclusions: iCBTS empowered with well-being prediction is expected to improve the sleep durations of shift workers, thereby enhancing their overall well-being. Findings of this study will reveal the potential of this system for improving sleep disorders among shift workers.
Original language | English (US) |
---|---|
Article number | e24799 |
Journal | JMIR Research Protocols |
Volume | 10 |
Issue number | 3 |
DOIs | |
State | Published - Mar 2021 |
Keywords
- CBT
- Cognitive behavioral therapy
- Health care workers
- Machine learning
- Medical safety
- Online intervention
- Pilot study
- Safety
- Safety issue
- Shift work
- Shift work sleep disorders
- Shift workers
- Sleep
- Sleep disorder
- Wearable sensors
- Well-being
ASJC Scopus subject areas
- General Medicine