Integration of FEBIO as an Instructional Tool in the Undergraduate Biomechanics Curriculum

David Jiang, David W. Grainger, Jeffrey A. Weiss, Lucas H. Timmins

Research output: Contribution to journalArticlepeer-review

Abstract

Computer simulations play an important role in a range of biomedical engineering applications. Thus, it is important that biomedical engineering students engage with modeling in their undergraduate education and establish an understanding of its practice. In addition, computational tools enhance active learning and complement standard pedagogical approaches to promote student understanding of course content. Herein, we describe the development and implementation of learning modules for computational modeling and simulation (CM&S) within an undergraduate biomechanics course. We developed four CM&S learning modules that targeted predefined course goals and learning outcomes within the FEBIO STUDIO software. For each module, students were guided through CM&S tutorials and tasked to construct and analyze more advanced models to assess learning and competency and evaluate module effectiveness. Results showed that students demonstrated an increased interest in CM&S through module progression and that modules promoted the understanding of course content. In addition, students exhibited increased understanding and competency in finite element model development and simulation software use. Lastly, it was evident that students recognized the importance of coupling theory, experiments, and modeling and understood the importance of CM&S in biomedical engineering and its broad application. Our findings suggest that integrating well-designed CM&S modules into undergraduate biomedical engineering education holds much promise in supporting student learning experiences and introducing students to modern engineering tools relevant to professional development.

Original languageEnglish (US)
Article numberBIO-23-1310
JournalJournal of Biomechanical Engineering
Volume146
Issue number5
DOIs
StatePublished - May 1 2024

Keywords

  • FEBio
  • computational simulation
  • engineering education
  • finite element analysis
  • pedagogy
  • Biomechanical Phenomena
  • Students
  • Humans
  • Computer Simulation
  • Curriculum
  • Software

ASJC Scopus subject areas

  • Biomedical Engineering
  • Physiology (medical)

Fingerprint

Dive into the research topics of 'Integration of FEBIO as an Instructional Tool in the Undergraduate Biomechanics Curriculum'. Together they form a unique fingerprint.

Cite this