TY - JOUR
T1 - Insulin-induced remission in new-onset NOD mice is maintained by the PD-1-PD-L1 pathway
AU - Fife, Brian T.
AU - Guleria, Indira
AU - Bupp, Melanie Gubbels
AU - Eagar, Todd N.
AU - Tang, Qizhi
AU - Bour-Jordan, Helene
AU - Yagita, Hideo
AU - Azuma, Miyuki
AU - Sayegh, Mohamed H.
AU - Bluestone, Jeffrey A.
PY - 2006/11
Y1 - 2006/11
N2 - The past decade has seen a significant increase in the number of potentially tolerogenic therapies for treatment of new-onset diabetes. However, most treatments are antigen nonspecific, and the mechanism for the maintenance of long-term tolerance remains unclear. In this study, we developed an antigen-specific therapy, insulin-coupled antigen-presenting cells, to treat diabetes in nonobese diabetic mice after disease onset. Using this approach, we demonstrate disease remission, inhibition of pathogenic T cell proliferation, decreased cytokine production, and induction of anergy. Moreover, we show that robust long-term tolerance depends on the programmed death 1 (PD-1)-programmed death ligand (PD-L)1 pathway, not the distinct cytotoxic T lymphocyte-associated antigen 4 pathway. Anti-PD-1 and anti-PD-L1, but not anti-PD-L2, reversed tolerance weeks after tolerogenic therapy by promoting antigen-specific T cell proliferation and inflammatory cytokine production directly in infiltrated tissues. PD-1-PD-L1 blockade did not limit T regulatory cell activity, suggesting direct effects on pathogenic T cells. Finally, we describe a critical role for PD-1-PD-L1 in another powerful immunotherapy model using anti-CD3, suggesting that PD-1-PD-L1 interactions form part of a common pathway to selectively maintain tolerance within the target tissues. JEM
AB - The past decade has seen a significant increase in the number of potentially tolerogenic therapies for treatment of new-onset diabetes. However, most treatments are antigen nonspecific, and the mechanism for the maintenance of long-term tolerance remains unclear. In this study, we developed an antigen-specific therapy, insulin-coupled antigen-presenting cells, to treat diabetes in nonobese diabetic mice after disease onset. Using this approach, we demonstrate disease remission, inhibition of pathogenic T cell proliferation, decreased cytokine production, and induction of anergy. Moreover, we show that robust long-term tolerance depends on the programmed death 1 (PD-1)-programmed death ligand (PD-L)1 pathway, not the distinct cytotoxic T lymphocyte-associated antigen 4 pathway. Anti-PD-1 and anti-PD-L1, but not anti-PD-L2, reversed tolerance weeks after tolerogenic therapy by promoting antigen-specific T cell proliferation and inflammatory cytokine production directly in infiltrated tissues. PD-1-PD-L1 blockade did not limit T regulatory cell activity, suggesting direct effects on pathogenic T cells. Finally, we describe a critical role for PD-1-PD-L1 in another powerful immunotherapy model using anti-CD3, suggesting that PD-1-PD-L1 interactions form part of a common pathway to selectively maintain tolerance within the target tissues. JEM
UR - http://www.scopus.com/inward/record.url?scp=33751552197&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33751552197&partnerID=8YFLogxK
U2 - 10.1084/jem.20061577
DO - 10.1084/jem.20061577
M3 - Article
C2 - 17116737
AN - SCOPUS:33751552197
SN - 0022-1007
VL - 203
SP - 2737
EP - 2747
JO - Journal of Experimental Medicine
JF - Journal of Experimental Medicine
IS - 12
ER -