TY - JOUR
T1 - Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90
T2 - A novel basis for antileukemia activity of histone deacetylase inhibitors
AU - Bali, Purva
AU - Pranpat, Michael
AU - Bradner, James
AU - Balasis, Maria
AU - Fiskus, Warren
AU - Guo, Fei
AU - Rocha, Kathy
AU - Kumaraswamy, Sandhya
AU - Boyapalle, Sandhya
AU - Atadja, Peter
AU - Seto, Edward
AU - Bhalla, Kapil
N1 - Copyright:
Copyright 2008 Elsevier B.V., All rights reserved.
PY - 2005/7/22
Y1 - 2005/7/22
N2 - The hydroxamic acid (HAA) analogue pan-histone deacetylase (HDAC) inhibitors (HDIs) LAQ824 and LBH589 have been shown to induce acetylation and inhibit the ATP binding and chaperone function of heat shock protein (HSP) 90. This promotes the polyubiquitylation and degradation of the pro-growth and pro-survival client proteins Bcr-Abl, mutant FLT-3, c-Raf, and AKT in human leukemia cells. HDAC6 is a member of the class IIB HDACs. It is predominantly cytosolic, microtubule-associated α-tubulin deacetylase that is also known to promote aggresome inclusion of the misfolded polyubiquitylated proteins. Here we demonstrate that in the Bcr-abl oncogene expressing human leukemia K562 cells, HDAC6 can be co-immunoprecipitated with HSP90, and the knock-down of HDAC6 by its siRNA induced the acetylation of HSP90 and α-tubulin. Depletion of HDAC6 levels also inhibited the binding of HSP90 to ATP, reduced the chaperone association of HSP90 with its client proteins, e.g. Bcr-Abl, and induced polyubiquitylation and partial depletion of Bcr-Abl. Conversely, the ectopic overexpression of HDAC6 inhibited LAQ824-induced acetylation of HSP90 and α-tubulin and reduced LAQ824-mediated depletion of Bcr-Abl, AKT, and c-Raf. Collectively, these findings indicate that HDAC6 is also an HSP90 deacetylase. Targeted inhibition of HDAC6 leads to acetylation of HSP90 and disruption of its chaperone function, resulting in polyubiquitylation and depletion of pro-growth and pro-survival HSP90 client proteins including Bcr-Abl. Depletion of HDAC6 sensitized human leukemia cells to HAA-HDIs and proteasome inhibitors.
AB - The hydroxamic acid (HAA) analogue pan-histone deacetylase (HDAC) inhibitors (HDIs) LAQ824 and LBH589 have been shown to induce acetylation and inhibit the ATP binding and chaperone function of heat shock protein (HSP) 90. This promotes the polyubiquitylation and degradation of the pro-growth and pro-survival client proteins Bcr-Abl, mutant FLT-3, c-Raf, and AKT in human leukemia cells. HDAC6 is a member of the class IIB HDACs. It is predominantly cytosolic, microtubule-associated α-tubulin deacetylase that is also known to promote aggresome inclusion of the misfolded polyubiquitylated proteins. Here we demonstrate that in the Bcr-abl oncogene expressing human leukemia K562 cells, HDAC6 can be co-immunoprecipitated with HSP90, and the knock-down of HDAC6 by its siRNA induced the acetylation of HSP90 and α-tubulin. Depletion of HDAC6 levels also inhibited the binding of HSP90 to ATP, reduced the chaperone association of HSP90 with its client proteins, e.g. Bcr-Abl, and induced polyubiquitylation and partial depletion of Bcr-Abl. Conversely, the ectopic overexpression of HDAC6 inhibited LAQ824-induced acetylation of HSP90 and α-tubulin and reduced LAQ824-mediated depletion of Bcr-Abl, AKT, and c-Raf. Collectively, these findings indicate that HDAC6 is also an HSP90 deacetylase. Targeted inhibition of HDAC6 leads to acetylation of HSP90 and disruption of its chaperone function, resulting in polyubiquitylation and depletion of pro-growth and pro-survival HSP90 client proteins including Bcr-Abl. Depletion of HDAC6 sensitized human leukemia cells to HAA-HDIs and proteasome inhibitors.
UR - http://www.scopus.com/inward/record.url?scp=22844432021&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=22844432021&partnerID=8YFLogxK
U2 - 10.1074/jbc.C500186200
DO - 10.1074/jbc.C500186200
M3 - Article
C2 - 15937340
AN - SCOPUS:22844432021
SN - 0021-9258
VL - 280
SP - 26729
EP - 26734
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 29
ER -