In Silico Model of Vitamin D3 Dependent NADPH Oxidase Complex Activation during Mycobacterium Infection

Maya Gough, Elebeoba May

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Mycobacterium tuberculosis (Mtb) is a highly infectious aerosolizable bacterium, which causes upward of 1.5 million deaths per year. Alveolar macrophages, the primary defense cell of the lung, are the preferred host cell of this intracellular bacterium. Vitamin D3 is a known transcription factor, modulating the transcription of pro- and anti-inflammatory cytokines and immunologically relevant proteins. In a vitamin D3 deficient host, the immune systems response to infection is greatly impaired. We used a quantitative systems biology approach to model the impact of long-term vitamin D3 deficiency on macrophage effector response. We then compared our simulation output to our in vitro model of mycobacterium infection of macrophages from vitamin D3 supplemented hosts. Our in silico model results agreed with in vitro levels of hydrogen peroxide (H2O2) production, an antimicrobial effector molecule produced by the host's macrophage, known to be modulated indirectly by vitamin D3. The current model will provide a foundation for further studies into the effects of micronutrient deficiency on immune response.

Original languageEnglish (US)
Title of host publication40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2018
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2382-2385
Number of pages4
ISBN (Electronic)9781538636466
DOIs
StatePublished - Oct 26 2018
Event40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2018 - Honolulu, United States
Duration: Jul 18 2018Jul 21 2018

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2018-July
ISSN (Print)1557-170X

Other

Other40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2018
CountryUnited States
CityHonolulu
Period7/18/187/21/18

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint Dive into the research topics of 'In Silico Model of Vitamin D<sub>3</sub> Dependent NADPH Oxidase Complex Activation during Mycobacterium Infection'. Together they form a unique fingerprint.

Cite this