Improved performance of Li-ion polymer batteries through improved pulse charging algorithm

Judy M. Amanor-Boadu, Anthony Guiseppi-Elie

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Pulse charging of lithium-ion polymer batteries (LiPo), when properly implemented, offers increased battery charge and energy efficiencies and improved safety for electronic device consumers. Investigations of the combined impact of pulse charge duty cycle and frequency of the pulse charge current on the performance of lithium-ion polymer (LiPo) batteries used the Taguchi orthogonal arrays (OA) to identify optimal and robust pulse charging parameters that maximize battery charge and energy efficiencies while decreasing charge time. These were confirmed by direct comparison with the commonly applied benchmark constant current-constant voltage (CC-CV) charging method. The operation of a pulse charger using identified optimal parameters resulted in charge time reduction by 49% and increased charge and energy efficiencies of 2% and 12% respectively. Furthermore, when pulse charge current factors, such as frequency and duty cycle were considered, it was found that the duty cycle of the pulse charge current had the most impact on the cycle life of the LiPo battery and that the cycle life could be increased by as much as 100 cycles. Finally, the charging temperature was found to have the most statistically significant impact on the temporarily evolving LiPo battery impedance, a measure of its degradation.

Original languageEnglish (US)
Article number895
JournalApplied Sciences (Switzerland)
Volume10
Issue number3
DOIs
StatePublished - Feb 1 2020

Keywords

  • Battery charging
  • Battery impedance
  • Constant current constant voltage
  • Cycle life
  • Design of experiments
  • Li-ion polymer battery
  • Pulse charging
  • Taguchi orthogonal array

ASJC Scopus subject areas

  • Materials Science(all)
  • Instrumentation
  • Engineering(all)
  • Process Chemistry and Technology
  • Computer Science Applications
  • Fluid Flow and Transfer Processes

Fingerprint Dive into the research topics of 'Improved performance of Li-ion polymer batteries through improved pulse charging algorithm'. Together they form a unique fingerprint.

Cite this