Implicit stress integration procedure for small and large strains of the Gurson material model

Milos Kojic, Ivo Vlastelica, Miroslav Zivkovic

Research output: Contribution to journalArticle

10 Scopus citations

Abstract

The Gurson material model has broad applications in fracture mechanics, large strain deformations and failure of metals. Void growth and void nucleation are included in the model considered in this paper. An implicit stress integration procedure with calculation of the consistent tangent moduli is developed for the Gurson model. The general 3D deformations and the plane stress conditions are considered. The procedure is robust, simple and computationally efficient, suitable for use within the finite element method (FEM). It represents an application of the governing parameter method (GPM) for stress integration in case of inelastic material deformation. A large strain formulation, based on the multiplicative decomposition of the deformation gradient for material with plastic change of volume and logarithmic strains, is used in the paper. The developed numerical procedure for stress integration is applicable to small and large strains conditions. Solved examples illustrate the main features of the developed numerical algorithm.

Original languageEnglish (US)
Pages (from-to)2701-2720
Number of pages20
JournalInternational Journal for Numerical Methods in Engineering
Volume53
Issue number12
DOIs
StatePublished - Apr 30 2002

Keywords

  • Finite element method
  • Gurson model
  • Large strains
  • Stress calculation

ASJC Scopus subject areas

  • Engineering (miscellaneous)
  • Applied Mathematics
  • Computational Mechanics

Fingerprint Dive into the research topics of 'Implicit stress integration procedure for small and large strains of the Gurson material model'. Together they form a unique fingerprint.

Cite this