TY - JOUR
T1 - Immobilization and release of the redox mediator ferrocene monocarboxylic acid from within cross-linked p(HEMA-co-PEGMA-co-HMMA) hydrogels
AU - Boztas, Ali Ozgur
AU - Guiseppi-Elie, Anthony
N1 - Copyright:
Copyright 2009 Elsevier B.V., All rights reserved.
PY - 2009/8/10
Y1 - 2009/8/10
N2 - Cross-linked hydrogels are synthesized from hydroxyethylmethacrylate (HEMA), polyethyleneglycol methacrylate (PEGMA), and N-[tris(hydroxymethyl) methyl]-acrylamide (HMMA) [p(HEMA-co-PEGMA-co-HMMA) hydrogels] containing 1, 3, 5, 7, 9, or 12 M % of the cross-linker tetraethyleneglycol diacrylate (TEGDA) and are loaded during synthesis with the well-known redox mediator, ferrocene monocarboxylic acid (FcCOOH). In the absence of FcCOOH, the M% TEGDA in deionized (DI) water (48%; 1 mol % TEGDA to 32%; 12 mol % TEGDA) scales with the cross-link density in accordance with Flory-Huggins-Rehner theory. The release profiles of FcCOOH from hydrogel slabs (43.0 mM) into 0.1 M HEPES/0.1 M KCl buffer are determined from the oxidation peak current of FcCOOH via cyclic voltammetry (100 mV/s) and are decidedly Fickian with overall diffusion coefficients that range from 2.64 × 10-8 cm2/s (1 mol % TEGDA) to 4.87 × 10-9 cm2/s (12 mol % TEGDA) and with n parameters that approximated 0.5 but nonetheless linearly declined from 0.49 (1 mol %) to 0.42 (12 mol %). Diffusion coefficients, like hydration, strongly correlate with the M% TEGDA and hence with the cross-link density or the molecular weight (MW) between cross-links. The temperature dependence of the release profiles measured at 10, 15, 20, 25, 30, 35, 40, and 45°C reveal thermally activated transport with activation energies that are 30 kJ/mol (3 mol %), 36 kJ/mol (5 mol %), 45 kJ/mol (7 mol %), 47 kJ/mol (9 mol %) and 57 kJ/mol (12 mol %). Covalent tethering of the FcCOOH via the UV-polymerizable monomers ferrocene monomethacrylate (Fc-AEMA) and ferrocene polyethylene glycol monomethacrylate (Fc-PEG(3500)-AEMA) to produce pendant redox moieties is shown to eliminate or attenuate release of Fc. While, Fc-AEMA showed no evidence of release (0%) from the hydrogel, its PEG-conjugated equivalent, Fc-PEG(3500)-AEMA, shows release of 16% Fc after 5 days of immersion. These hydrogels will serve as the immobilization matrix for oxidoreductase enzymes of biosensors and the parameters obtained used in the modeling of such systems.
AB - Cross-linked hydrogels are synthesized from hydroxyethylmethacrylate (HEMA), polyethyleneglycol methacrylate (PEGMA), and N-[tris(hydroxymethyl) methyl]-acrylamide (HMMA) [p(HEMA-co-PEGMA-co-HMMA) hydrogels] containing 1, 3, 5, 7, 9, or 12 M % of the cross-linker tetraethyleneglycol diacrylate (TEGDA) and are loaded during synthesis with the well-known redox mediator, ferrocene monocarboxylic acid (FcCOOH). In the absence of FcCOOH, the M% TEGDA in deionized (DI) water (48%; 1 mol % TEGDA to 32%; 12 mol % TEGDA) scales with the cross-link density in accordance with Flory-Huggins-Rehner theory. The release profiles of FcCOOH from hydrogel slabs (43.0 mM) into 0.1 M HEPES/0.1 M KCl buffer are determined from the oxidation peak current of FcCOOH via cyclic voltammetry (100 mV/s) and are decidedly Fickian with overall diffusion coefficients that range from 2.64 × 10-8 cm2/s (1 mol % TEGDA) to 4.87 × 10-9 cm2/s (12 mol % TEGDA) and with n parameters that approximated 0.5 but nonetheless linearly declined from 0.49 (1 mol %) to 0.42 (12 mol %). Diffusion coefficients, like hydration, strongly correlate with the M% TEGDA and hence with the cross-link density or the molecular weight (MW) between cross-links. The temperature dependence of the release profiles measured at 10, 15, 20, 25, 30, 35, 40, and 45°C reveal thermally activated transport with activation energies that are 30 kJ/mol (3 mol %), 36 kJ/mol (5 mol %), 45 kJ/mol (7 mol %), 47 kJ/mol (9 mol %) and 57 kJ/mol (12 mol %). Covalent tethering of the FcCOOH via the UV-polymerizable monomers ferrocene monomethacrylate (Fc-AEMA) and ferrocene polyethylene glycol monomethacrylate (Fc-PEG(3500)-AEMA) to produce pendant redox moieties is shown to eliminate or attenuate release of Fc. While, Fc-AEMA showed no evidence of release (0%) from the hydrogel, its PEG-conjugated equivalent, Fc-PEG(3500)-AEMA, shows release of 16% Fc after 5 days of immersion. These hydrogels will serve as the immobilization matrix for oxidoreductase enzymes of biosensors and the parameters obtained used in the modeling of such systems.
UR - http://www.scopus.com/inward/record.url?scp=68849091817&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=68849091817&partnerID=8YFLogxK
U2 - 10.1021/bm900299b
DO - 10.1021/bm900299b
M3 - Article
C2 - 19601642
AN - SCOPUS:68849091817
SN - 1525-7797
VL - 10
SP - 2135
EP - 2143
JO - Biomacromolecules
JF - Biomacromolecules
IS - 8
ER -