TY - JOUR
T1 - Imaging assessment of cardioprotection mediated by a dodecafluoropentane oxygen-carrier administered during myocardial infarction
AU - Liu, Zhonglin
AU - Barber, Christy
AU - Gupta, Akash
AU - Wan, Li
AU - Won, Young Wook
AU - Furenlid, Lars R.
AU - Chen, Qin
AU - Desai, Ankit A.
AU - Zhao, Ming
AU - Bull, David A.
AU - Unger, Evan C.
AU - Martin, Diego R.
N1 - Publisher Copyright:
© 2019 Elsevier Inc.
PY - 2019/3
Y1 - 2019/3
N2 - Introduction: The objective of this study was to investigate the cardioprotective effects of a dodecafluoropentane (DDFP)-based perfluorocarbon emulsion (DDFPe) as an artificial carrier for oxygen delivery to ischemic myocardium, using 99mTc-duramycin SPECT imaging. Methods: Rat hearts with Ischemia-reperfusion (I/R) was prepared by coronary ligation for 45-min followed by reperfusion. The feasibility of 99mTc-duramycin in detecting myocardial I/R injury and its kinetic profile were first verified in the ischemic hearts with 2-h reperfusion (n = 6). DDFPe (0.6 mL/kg) was intravenously administered at 10 min after coronary ligation in fifteen rats and saline was given in thirteen rats as controls. 99mTc-duramycin SPECT images were acquired in the DDFPe-treated hearts and saline controls at 2-h (DDFPe-2 h, n = 7 and Saline-2 h, n = 6) or 24-h (DDFPe-24 h, n = 8 and Saline-24 h, n = 7) of reperfusion. Results: SPECT images, showing “hot-spot” 99mTc-duramycin uptake in the ischemic myocardium, exhibited significantly lower radioactive retention and smaller hot-spot size in the DDFPe-2 h and DDFPe-24 h hearts compared to controls. The infarcts in the Saline-24 h hearts extended significantly relative to measurements in the Saline-2 h. The extension of infarct size did not reach a statistical difference between the DDFPe-2 h and DDFPe-24 h hearts. Ex vivo measurement of 99mTc-duramycin activity (%ID/g) was lower in the ischemic area of DDFPe-2 h and DDFPe-24 h than that of the Saline-2 h and Saline-24 h hearts (P < 0.05). The area of injured myocardium, delineated by the uptake of 99mTc-duramycin, extended more substantially outside the infarct zone in the controls. Conclusions: Significant reduction in myocardial I/R injury, as assessed by 99mTc-duramycin cell death imaging and histopathological analysis, was induced by DDFPe treatment after acute myocardial ischemia. 99mTc-duramycin imaging can reveal myocardial cell death in ischemic hearts and may provide a tool for the non-invasive assessment of cardioprotective interventions.
AB - Introduction: The objective of this study was to investigate the cardioprotective effects of a dodecafluoropentane (DDFP)-based perfluorocarbon emulsion (DDFPe) as an artificial carrier for oxygen delivery to ischemic myocardium, using 99mTc-duramycin SPECT imaging. Methods: Rat hearts with Ischemia-reperfusion (I/R) was prepared by coronary ligation for 45-min followed by reperfusion. The feasibility of 99mTc-duramycin in detecting myocardial I/R injury and its kinetic profile were first verified in the ischemic hearts with 2-h reperfusion (n = 6). DDFPe (0.6 mL/kg) was intravenously administered at 10 min after coronary ligation in fifteen rats and saline was given in thirteen rats as controls. 99mTc-duramycin SPECT images were acquired in the DDFPe-treated hearts and saline controls at 2-h (DDFPe-2 h, n = 7 and Saline-2 h, n = 6) or 24-h (DDFPe-24 h, n = 8 and Saline-24 h, n = 7) of reperfusion. Results: SPECT images, showing “hot-spot” 99mTc-duramycin uptake in the ischemic myocardium, exhibited significantly lower radioactive retention and smaller hot-spot size in the DDFPe-2 h and DDFPe-24 h hearts compared to controls. The infarcts in the Saline-24 h hearts extended significantly relative to measurements in the Saline-2 h. The extension of infarct size did not reach a statistical difference between the DDFPe-2 h and DDFPe-24 h hearts. Ex vivo measurement of 99mTc-duramycin activity (%ID/g) was lower in the ischemic area of DDFPe-2 h and DDFPe-24 h than that of the Saline-2 h and Saline-24 h hearts (P < 0.05). The area of injured myocardium, delineated by the uptake of 99mTc-duramycin, extended more substantially outside the infarct zone in the controls. Conclusions: Significant reduction in myocardial I/R injury, as assessed by 99mTc-duramycin cell death imaging and histopathological analysis, was induced by DDFPe treatment after acute myocardial ischemia. 99mTc-duramycin imaging can reveal myocardial cell death in ischemic hearts and may provide a tool for the non-invasive assessment of cardioprotective interventions.
KW - Cell death imaging
KW - Dodecafluoropentane perfluorocarbon emulsion
KW - Myocardial ischemia-reperfusion
KW - Phosphatidylethanolamine
KW - Tc-Duramycin
UR - http://www.scopus.com/inward/record.url?scp=85061543873&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85061543873&partnerID=8YFLogxK
U2 - 10.1016/j.nucmedbio.2019.01.004
DO - 10.1016/j.nucmedbio.2019.01.004
M3 - Article
C2 - 30772168
AN - SCOPUS:85061543873
SN - 0969-8051
VL - 70
SP - 67
EP - 77
JO - Nuclear Medicine and Biology
JF - Nuclear Medicine and Biology
ER -