Abstract
Persistent inflammatory response has adverse effects on left ventricular (LV) function and remodeling following acute myocardial infarction. We hypothesized that suppression of inflammation with interleukin (IL)-10 treatment attenuates LV dysfunction and remodeling after acute myocardial infarction. After the induction of acute myocardial infarction, mice were treated with either saline or recombinant IL-10, and inflammatory response and LV functional and structural remodeling changes were evaluated. IL-10 significantly suppressed infiltration of inflammatory cells and expression of proinflammatory cytokines in the myocardium. These changes were associated with IL-10-mediated inhibition of p38 mitogen-activated protein kinase activation and repression of the cytokine mRNA-stabilizing protein HuR. IL-10 treatment significantly improved LV functions, reduced infarct size, and attenuated infarct wall thinning. Myocardial infarction-induced increase in matrix metalloproteinase (MMP)-9 expression and activity was associated with increased fibrosis, whereas IL-10 treatment reduced both MMP-9 activity and fibrosis. Small interfering RNA knockdown of HuR mimicked IL-10-mediated reduction in MMP-9 expression and activity in NIH3T3 cells. Moreover, IL-10 treatment significantly increased capillary density in the infarcted myocardium which was associated with enhanced STAT3 phosphorylation. Taken together, our studies demonstrate that IL-10 suppresses inflammatory response and contributes to improved LV function and remodeling by inhibiting fibrosis via suppression of HuR/MMP-9 and by enhancing capillary density through activation of STAT3.
Original language | English (US) |
---|---|
Pages (from-to) | e9-e18 |
Journal | Circulation Research |
Volume | 104 |
Issue number | 2 |
DOIs | |
State | Published - Jan 30 2009 |
Keywords
- Cardiac remodeling
- Cytokines
- IL-10
- Inflammation
- Myocardial infarction
ASJC Scopus subject areas
- Physiology
- Cardiology and Cardiovascular Medicine