Hodgkin lymphoma risk: Role of genetic polymorphisms and gene-gene interactions in DNA repair pathways

Claudia M. Monroy, Andrea C. Cortes, Mirtha Lopez, Elizabeth Rourke, Carol J. Etzel, Anas Younes, Sara S. Strom, Randa El-Zein

Research output: Contribution to journalArticlepeer-review

26 Scopus citations


DNA repair variants may play a potentially important role in an individual's susceptibility to developing cancer. Numerous studies have reported the association between genetic single nucleotide polymorphisms (SNPs) in DNA repair genes and different types of hematologic cancers. However, to date, the effects of such SNPs on modulating Hodgkin lymphoma (HL) risk have not yet been investigated. We hypothesized that gene-gene interaction between candidate genes in direct reversal, nucleotide excision repair (NER), base excision repair (BER) and double strand break (DSB) pathways may contribute to susceptibility to HL. To test this hypothesis, we conducted a study on 200 HL cases and 220 controls to assess associations between HL risk and 21 functional SNPs in DNA repair genes. We evaluated potential gene-gene interactions and the association of multiple polymorphisms in a chromosome region using a multi-analytic strategy combining logistic regression, multi-factor dimensionality reduction and classification and regression tree approaches. We observed that, in combination, allelic variants in the XPC Ala499Val, NBN Glu185Gln, XRCC3 Thr241Me, XRCC1 Arg194Trp, and XRCC1 399Gln polymorphisms modify the risk for developing HL. Moreover, the cumulative genetic risk score revealed a significant trend where the risk for developing HL increases as the number of adverse alleles in BER and DSB genes increase. These findings suggest that DNA repair variants in BER and DSB pathways may play an important role in the development of HL.

Original languageEnglish (US)
Pages (from-to)825-834
Number of pages10
JournalMolecular Carcinogenesis
Issue number11
StatePublished - Nov 2011


  • DNA repair genes
  • Gene-gene interaction
  • Hodgkin lymphoma

ASJC Scopus subject areas

  • Molecular Biology
  • Cancer Research


Dive into the research topics of 'Hodgkin lymphoma risk: Role of genetic polymorphisms and gene-gene interactions in DNA repair pathways'. Together they form a unique fingerprint.

Cite this