Histone deacetylase inhibitors activate NF-κB in human leukemia cells through an ATM/NEMO-related pathway

Roberto R. Rosato, Sarah S. Kolla, Stefanie K. Hock, Jorge A. Almenara, Ankita Patel, Sanjay Amin, Peter Atadja, Paul B. Fisher, Paul Dent, Steven Grant

Research output: Contribution to journalArticle

56 Scopus citations

Abstract

Mechanisms underlying histone deacetylase inhibitor (HDACI)-mediated NF-κB activation were investigated in human leukemia cells. Exposure of U937 and other leukemia cells to LBH-589 induced reactive oxygen species (ROS) followed by single strand (XRCC1) and double strand (γ-H2AX) DNA breaks. Notably, LBH-589 lethality was markedly attenuated by small interfering RNA (siRNA) knockdown of the DNA damage-linked histone, H1.2. LBH-589 triggered p65/RelA activation, NF-κB-dependent induction of Mn-SOD2, and ROS elimination. Interference with LBH-589-mediated NF-κB activation (e.g. in IκBα super-repressor transfected cells) diminished HDACI-mediated Mn-SOD2 induction and increased ROS accumulation, DNA damage, and apoptosis. The Mn-SOD2 mimetic TBAP (manganese(III)-tetrakis 4-benzoic acid porphyrin) prevented HDACI-induced ROS and NF-κB activation while dramatically attenuating DNA damage and cell death. In contrast, TRAF2 siRNA knockdown, targeting receptor-mediated NF-κB activation, blocked TNFα- but not HDACI-mediated NF-κB activation and lethality. Consistent with ROS-mediated DNA damage, LBH-589 exposure activated ATM (on serine 1981) and increased its association with NEMO. Significantly, siRNA NEMO or ATM knockdown blocked HDACI-mediated NF-κB activation, resulting in diminished MnSOD2 induction and enhanced oxidative DNA damage and cell death. In accord with the recently described DNA damage/ATM/NEMO pathway, SUMOylation site mutant NEMO (K277A or K309A) cells exposed to LBH-589 displayed diminished ATM/NEMO association, NEMO and p65/RelA nuclear localization/ activation, and MnSOD2 up-regulation. These events were accompanied by increased ROS production, γ-H2AX formation, and cell death. Together, these findings indicate that in human leukemia cells, HDACIs activate the cytoprotective NF-κB pathway through an ATM/NEMO/SUMOylation-dependent process involving the induction of ROS and DNA damage and suggest that blocking NF-κB activation via the atypical ATM/NEMO nuclear pathway can enhance HDACI antileukemic activity.

Original languageEnglish (US)
Pages (from-to)10064-10077
Number of pages14
JournalJournal of Biological Chemistry
Volume285
Issue number13
DOIs
StatePublished - Mar 26 2010

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint Dive into the research topics of 'Histone deacetylase inhibitors activate NF-κB in human leukemia cells through an ATM/NEMO-related pathway'. Together they form a unique fingerprint.

Cite this