High levels of p26BCL-2 oncoprotein retard taxol-induced apoptosis in human pre-B leukemia cells

Caroline Tang, Mark C. Willingham, John C. Reed, Toshiyuki Miyashita, Swapan Ray, Vidya Ponnathpur, Yue Huang, Mary Ella Mahoney, Gloria Bullock, Kapil Bhalla

Research output: Contribution to journalArticle

140 Scopus citations

Abstract

In human leukemic cells clinically relevant concentrations of taxol have been demonstrated to induce the biochemical and morphologic hallmarks of apoptosis (Leukemia 1993;7:563-568). Since overexpression of the bcl-2 gene has been reported to retard apoptosis due to a variety of anticancer agents, we examined and compared taxol-induced intracellular microtubular bundling and apoptosis in pre-B human leukemia 697 cells and their counterparts which have been transfected with and overexpress cDNA derived from the bcl-2 gene. Treatment with 0.1 or 1.0 μmol/l taxol for 24 h resulted in internucleosomal DNA fragmentation and morphologic features of apoptosis in 697 cells, but not in 697/BCL-2 cells. However, indirect immunofluorescent staining with anti-tubulin antibody revealed that taxol treatment produces stable microtubule bundles resistant to calcium-mediated disassembly in 697, as well as 697/BCL-2 cells. In addition, taxol-induced microtubule bundling was associated with a marked accumulation of the two cell types in the G2/M phase of the cell cycle. Following exposure to taxol, when 697 cells were washed and kept in drug-free medium, they showed rapid onset of apoptosis followed by loss of cell viability and a decline in cell numbers. In contrast, identically treated 697/BCL-2 cells kept in drug-free medium remained in a growth arrested state, but showed little evidence of apoptosis for up to 4 days. They eventually demonstrated features of apoptotic cell death and loss of viability between 5 and 7 days. This was not accompanied by a decrease in p26BCL-2 levels. Anti-phosphotyrosine or anti-MAP kinase immunoblot analyses of proteins isolated from taxol-treated 697 and 697/BCL-2 cells failed to show any difference in tyrosine phosphorylation of cellular proteins. Therefore, our findings indicate that in 697/BCL-2 cells, high levels of p26BCL-2 significantly delay taxol-induced endonucleolytic internucleosomal DNA fragmentation and apoptosis, but do not affect taxol-induced microtubule bundling or cell cycle growth arrest. The delayed onset of taxol-induced DNA fragmentation and apoptosis in 697/BCL-2 cells without down-regulation of p26BCL-2 levels suggests that an alternative mechanism of taxol-mediated apoptosis might be triggered which is unimpeded by high p26BCL-2 levels, or taxol-induced prolongation of mitotic arrest may lead to the inactivation or inhibition of that mechanism by which P26BCL-2 is able to block apoptosis.

Original languageEnglish (US)
Pages (from-to)1960-1969
Number of pages10
JournalLeukemia
Volume8
Issue number11
StatePublished - Jan 1 1994

ASJC Scopus subject areas

  • Hematology
  • Oncology
  • Cancer Research

Fingerprint Dive into the research topics of 'High levels of p26BCL-2 oncoprotein retard taxol-induced apoptosis in human pre-B leukemia cells'. Together they form a unique fingerprint.

Cite this