Abstract
Heme oxygenase-1 (HO-1) is induced under a variety of pro-oxidant conditions such as those associated with ischemia-reperfusion injury (IRI) of transplanted organs. HO-1 cleaves the heme porphyrin ring releasing Fe2+, which induces the expression of the Fe2+ sequestering protein ferritin. By limiting the ability of Fe2+ to participate in the generation of free radicals through the Fenton reaction, ferritin acts as an anti-oxidant. We have previously shown that HO-1 protects transplanted organs from IRI. We have linked this protective effect with the anti-apoptotic action of HO-1. Whether the iron-binding properties of ferritin contributed to the protective effect of HO-1 was not clear. We now report that recombinant adenovirus mediated overexpression of the ferritin heavy chain (H-ferritin) gene protects rat livers from IRI and prevents hepatocellular damage upon transplantation into syngeneic recipients. The protective effect of H-ferritin is associated with the inhibition of endothelial cell and hepatocyte apoptosis in vivo. H-ferritin protects cultured endothelial cells from apoptosis induced by a variety of stimuli. These findings unveil the anti-apoptotic function of H-ferritin and suggest that H-ferritin can be used in a therapeutic manner to prevent liver IRI and thus maximize the organ donor pool used for transplantation.
Original language | English (US) |
---|---|
Pages (from-to) | 1724-1726 |
Number of pages | 3 |
Journal | The FASEB journal : official publication of the Federation of American Societies for Experimental Biology |
Volume | 17 |
Issue number | 12 |
DOIs | |
State | Published - Sep 2003 |
ASJC Scopus subject areas
- Biotechnology
- Biochemistry
- Molecular Biology
- Genetics