Abstract
The orphan receptor LRH-1 and the oxysterol receptors LXRα and LXRβ are established transcriptional regulators of lipid metabolism that appear to control inflammatory processes. Here, we investigate the anti-inflammatory actions of these nuclear receptors in the hepatic acute phase response (APR). We report that selective synthetic agonists induce SUMOylation-dependent recruitment of either LRH-1 or LXR to hepatic APR promoters and prevent the clearance of the N-CoR corepressor complex upon cytokine stimulation. Investigations of the APR in vivo, using LXR knockout mice, indicate that the anti-inflammatory actions of LXR agonists are triggered selectively by the LXRβ subtype. We further find that hepatic APR responses in small ubiquitin-like modifier-1 (SUMO-1) knockout mice are increased, which is due in part to diminished LRH-1 action at APR promoters. Finally, we provide evidence that the metabolically important coregulator GPS2 functions as a hitherto unrecognized transrepression mediator of interactions between SUMOylated nuclear receptors and the N-CoR corepressor complex. Our study extends the knowledge of anti-inflammatory mechanisms and pathways directed by metabolic nuclear receptor-corepressor networks to the control of the hepatic APR, and implies alternative pharmacological strategies for the treatment of human metabolic diseases associated with inflammation.
| Original language | English (US) |
|---|---|
| Pages (from-to) | 381-395 |
| Number of pages | 15 |
| Journal | Genes and Development |
| Volume | 24 |
| Issue number | 4 |
| DOIs | |
| State | Published - Feb 15 2010 |
Keywords
- Acute phase response
- GPS2
- Liver inflammation
- LRH-1
- LXR
ASJC Scopus subject areas
- Genetics
- Developmental Biology