TY - JOUR
T1 - FXXLF and WXXLF sequences mediate the NH2-terminal interaction with the ligand binding domain of the androgen receptor
AU - He, Bin
AU - Kemppainen, Jon A.
AU - Wilson, Elizabeth M.
PY - 2000/7/28
Y1 - 2000/7/28
N2 - The nuclear receptor superfamily members of eukaryotic transcriptional regulators contain a highly conserved activation function 2 (AF2) in the hormone binding carboxyl-terminal domain and, for some, an additional activation function 1 in the NH2-terminal region which is not conserved. Recent biochemical and crystallographic studies revealed the molecular basis of AF2 is hormone-dependent recruitment of LXXLL motif-containing coactivators, including the p160 family, to a hydrophobic cleft in the ligand binding domain. Our previous studies demonstrated that AF2 in the androgen receptor (AR) binds only weakly to LXXLL motif-containing coactivators and instead mediates an androgen-dependent interaction with the AR NH2-terminal domain required for its physiological function. Here we demonstrate in a mammalian two-hybrid assay, glutathione S-transferase fusion protein binding studies, and functional assays that two predicted α-helical regions that are similar, but functionally distinct from the p160 coactivator interaction sequence, mediate the androgen-dependent, NH2- and carboxyl-terminal interaction. FXXLF in the AR NH2-terminal domain with the sequence 23FQNLF27 mediates interaction with AF2 and is the predominant androgen-dependent interaction site. This FXXLF sequence and a second NH2-terminal WXXLF sequence 433WHTLF437 interact with different regions of the ligand binding domain to stabilize the hormone-receptor complex and may compete with AF2 recruitment of LXXLL motif-containing coactivators. The results suggest a unique mechanism for AR-mediated transcriptional activation.
AB - The nuclear receptor superfamily members of eukaryotic transcriptional regulators contain a highly conserved activation function 2 (AF2) in the hormone binding carboxyl-terminal domain and, for some, an additional activation function 1 in the NH2-terminal region which is not conserved. Recent biochemical and crystallographic studies revealed the molecular basis of AF2 is hormone-dependent recruitment of LXXLL motif-containing coactivators, including the p160 family, to a hydrophobic cleft in the ligand binding domain. Our previous studies demonstrated that AF2 in the androgen receptor (AR) binds only weakly to LXXLL motif-containing coactivators and instead mediates an androgen-dependent interaction with the AR NH2-terminal domain required for its physiological function. Here we demonstrate in a mammalian two-hybrid assay, glutathione S-transferase fusion protein binding studies, and functional assays that two predicted α-helical regions that are similar, but functionally distinct from the p160 coactivator interaction sequence, mediate the androgen-dependent, NH2- and carboxyl-terminal interaction. FXXLF in the AR NH2-terminal domain with the sequence 23FQNLF27 mediates interaction with AF2 and is the predominant androgen-dependent interaction site. This FXXLF sequence and a second NH2-terminal WXXLF sequence 433WHTLF437 interact with different regions of the ligand binding domain to stabilize the hormone-receptor complex and may compete with AF2 recruitment of LXXLL motif-containing coactivators. The results suggest a unique mechanism for AR-mediated transcriptional activation.
UR - http://www.scopus.com/inward/record.url?scp=0034725648&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0034725648&partnerID=8YFLogxK
U2 - 10.1074/jbc.M002807200
DO - 10.1074/jbc.M002807200
M3 - Article
C2 - 10816582
AN - SCOPUS:0034725648
SN - 0021-9258
VL - 275
SP - 22986
EP - 22994
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 30
ER -