Four-dimensional assessment of left ventricular torsion in mitral valve prolapse using CMR

Tanmay Mukherjee, Emilio A. Mendiola, Sunder Neelakantan, Dipan J. Shah, Reza Avazmohammadi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

The heterogeneity in myofiber helicity across the cardiac wall causes twisting (torsion) in the left ventricle (LV) during contraction, which is a significant contributor to its pumping function. Although important progress has been made in identifying and studying a quantitative “global” metric for torsion, four-dimensional (4D) torsion characteristics in the LV remain underexplored. We propose an imaging-based framework that uses myocardial motion obtained from cine cardiac magnetic resonance (CMR) scans of the LV to calculate torsion. We performed our LV torsion analysis in a mitral valve prolapse (MVP) human patient (n=1) pre- and post-MV repair. Establishing a high-fidelity torsion measure in the LV offers a rigorous regional marker to investigate the potential reversal of cardiac remodeling post-surgical interventions, such as MV repair. After image acquisition, a non-rigid image registration algorithm was used to calculate 4D LV displacements. Twisting was evaluated through (i) an in-plane rotation-based approximation (referred to as T2D) and (ii) a three-dimensional formulation involving in-plane and through-plane strains (referred to as T3D). Comparing T2D to T3D, broad regions of positive (counter-clockwise) rotation, captured through T3D, were unrepresented by T2D despite a qualitative agreement between the two metrics in capturing the average regional torsion. Also, the presence of comprehensive transmural positive torsion at the apical section was opposed to negative epicardial torsion at the midsection. Such variations in torsional behavior, captured by T3D, are expected due to transmural helicity in fiber orientation. Overall, the underlying effects of through-plane shear in characterizing LV torsion were evidenced, and the image registration framework offered a comprehensive tool to capture 4D myocardial torsion that can complement conventional LV global markers.

Original languageEnglish (US)
Title of host publicationMedical Imaging 2024
Subtitle of host publicationImage Processing
EditorsOlivier Colliot, Jhimli Mitra
PublisherSPIE
ISBN (Electronic)9781510671560
DOIs
StatePublished - 2024
EventMedical Imaging 2024: Image Processing - San Diego, United States
Duration: Feb 19 2024Feb 22 2024

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume12926
ISSN (Print)1605-7422

Conference

ConferenceMedical Imaging 2024: Image Processing
Country/TerritoryUnited States
CitySan Diego
Period2/19/242/22/24

Keywords

  • Cardiac magnetic resonance imaging
  • four-dimensional strain calculations
  • left ventricular torsion
  • mitral valve prolapse
  • non-rigid image registration

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Biomaterials
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Four-dimensional assessment of left ventricular torsion in mitral valve prolapse using CMR'. Together they form a unique fingerprint.

Cite this